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Abstract:

A new parameter parsimonious rainfall–run-off model, the Distance Distribution Dynamics (DDD) model, is used to simulate
hydrological time series at ungauged sites in the Lygne basin in Norway. The model parameters were estimated as functions of
catchment characteristics determined by geographical information system. The multiple regression equations relating
catchment characteristics and model parameters were trained from 84 calibrated catchments located all over Norway, and all
model parameters showed significant correlations with catchment characteristics. The significant correlation coefficients (with
p-value< 0.05) ranged from 0.22 to 0.55. The suitability of DDD for predictions in ungauged basins was tested for 17
catchments not used to estimate the multiple regression equations. For ten of the 17 catchments, deviations in Nash–Sutcliffe
efficiency (NSE) criteria between the calibrated and regionalised model were less than 0.1, and for two calibrated catchments
within the Lygne basin, the deviations were less than 0.08. The median NSE for the regionalized DDD for the 17 catchments
for two time series was 0.66 and 0.72. Deviations in NSE between calibrated and regionalised models are well explained by
the deviations between calibrated and regressed parameters describing spatial snow distribution and snowmelt respectively.
The quality of the simulated run-off series for the ungauged sites in the Lygne basin was assessed by comparing flow indices
describing high, medium and low flow estimated from observed run-off at the 17 catchments and for the simulated run-off
series. The indices estimated for the simulated series were generally well within the ranges defined by the 17 observed series.
Copyright © 2014 John Wiley & Sons, Ltd.
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INTRODUCTION

To make predictions in ungauged basins (PUB,
Sivapalan, 2003) is to challenge and overcome the
potential problem posed by the ‘uniqueness in place’
(Beven, 2000) of catchments that may limit the
possibilities of extrapolating hydrological behaviour from
one catchment to another. The problem is almost
insurmountable if accompanied with limited knowledge
on how the various hydrological processes, such as run-
off generation at land surfaces, evaporation from the soil
and water movement through various flow paths on the
land surface, the unsaturated zone and in the groundwater,
interact to produce the run-off hydrograph. An under-
standing of these processes and their interactions is hence
necessary in order to make realistic PUB. In this respect,
it is essential that the hydrological models are
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parametrically efficient (parsimonious) and identifiable
from the available catchment data (Young and
Romanowicz, 2004).
Several approaches have been suggested for making

progress in predicting in ungauged basins. Seibert (1999)
used the Swedish Hydrologiska Byråns Vattenbalans
model (HBV; Bergström, 1992; Sælthun, 1996;
Lindström et al., 1997) and investigated the regionaliza-
tion of its model parameters. HBV was calibrated for 11
catchments in a relatively homogeneous area in Sweden.
He tried to relate the different model parameters to
catchment characteristics (CCs) and found that only six
out of 13 model parameters exhibited such relations. He
further pointed out that parameter uncertainty complicat-
ed the regionalization of model parameters and suggested
including additional observed data into the calibration
process as a way to constrain model parameters. Other
studies attempting such a procedure using the HBV
model yielded divergent results. When including water
quality data in the calibration, Bergström et al. (2002)
experienced a decrease in the precision of run-off
simulation, whereas Parajka and Blöschl (2008) found a
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small increase in the precision of run-off simulation when
optical satellite (Moderate-Resolution Imaging
Spectroradiometer) scenes of snow cover were included
in the calibration. Merz and Blöschl (2004) performed a
large-scale experiment where they tried to regionalize the
parameters of the HBV model calibrated for 308
catchments over Austria. Very weak correlations were
found between CCs and the model parameters, and they
concluded that the best procedure was to regionalize the
parameters through kriging interpolation. Another con-
clusion by Merz and Blöschl (2004) is that it is difficult, if
at all possible, to find universal relationships between
model parameters and catchment attributes. Young (2006)
used a very large data set of 260 catchments in the UK to
investigate the regionalization of the Probability-
Distributed Moisture (PDM) model (Moore, 1985). This
model has considerably less parameters to be calibrated
than the HBV model (six to HBV’s 13). The study tested
two methods for regionalizing the model parameters: by
relating model parameters to CCs and by using a nearest
neighbour approach. The former method gave the best
result, which contrasts with the results of Merz and
Blöschl (2004). The fact that there are considerably less
parameters in the PDM to be calibrated than in HBV may,
in our opinion, also have played a role in reaching this
conclusion. Yadav et al. (2007) acknowledge that
structural errors and non-identifiability of model param-
eters in a conceptual model pose a serious constraint on
the ability of these models to give good PUB using
regionalized parameters. In order to circumvent this
problem, they instead regionalized dynamic characteris-
tics of flow using CCs. The dynamic characteristics of
flow provide constraints on model simulations and hence
on model parameterizations.
Despite the obvious scientific challenges, PUB became

an inspiring initiative launched and driven forward by the
International Association of Hydrological Sciences
(IAHS) during 2003–2012. Recently, a synthesis (Blöschl
et al., 2013) and a review (Hrachowitz et al., 2013)
summing up the decade of the IAHS PUB initiative have
been published. Hrachowitz et al. (2013) point out that
although not all of the goals set out at the beginning of the
initiative were reached, several insights on hydrological
processes, data quality and use, assessments of uncer-
tainty and principles on hydrological modelling were
found. One such principle was the advantages of
parameter parsimonious models for the challenge of
making PUB. Overparameterization in hydrological
models makes parameter identification very difficult
(Kirchner, 2006), which is obviously a problem for
predicting in ungauged basins because model parameters
are often determined from CCs and/or other hydrological
and climatic information (Yadav et al., 2007). The
advantages of few and clearly identified model parameters
Copyright © 2014 John Wiley & Sons, Ltd.
are also pointed out in other studies, e.g. Seibert (1999)
and Young (2006). Despite the somewhat depressing
general message that uncertainty in model structure and
parameter identifiability will obfuscate or indeed prevent
building relationships between model parameters and
CCs, this is exactly what we intend to do. We will,
however, apply a new parameter parsimonious model, the
Distance Distribution Dynamics (DDD) model (Skaugen
and Onof, 2014), under the assumption that not all
conceptual models suffer from the previously mentioned
limitations to the same degree. Sivapalan (2003) pointed
out that the catchment system, including topography, the
river network, soils, bogs, glaciers and vegetation, is the
source of information on which models have to be based
(refer also to Beven, 2000; Savenije, 2010). The DDD
model is, to a large degree, parameterized from CCs (i.e.
distance distributions of landscape elements considered to
be important for run-off dynamics such as soils, bogs
and the river network) determined from GIS. The
parameters in DDD all have a clear physical meaning
and are relatively few such that the limited information
available (the CCs) may reasonably be expected to
determine them. The number of parameters to be
calibrated in DDD is considerably reduced compared
with the parameter regime of the widely used HBV
model that, incidentally, has a reputation as parsimoni-
ous (Savenije, 2010). DDD has one calibration param-
eter in the run-off module compared with seven in the
HBV model.
This study was initiated in order to solve a very specific

problem, namely that of providing hydrological time
series so that biologists could study the interactions
between the environment and character species, which is
usually investigated by relating averages of large-scale
environmental variables to small-scale observations of
species ecology. An example of such a study is that of
Nilsson et al. (2011) on the white-throated dipper (WTD;
Cinclus cinclus), a visual predator of submerged macro-
invertebrates and therefore totally dependent on running
clean fresh water. Population fluctuations of the WTD
were correlated with the North Atlantic Oscillation Index,
average winter temperature, winter precipitation and the
timing of ice formation on a nearby lake. Whereas these
variables explained the temporal variability in the
population dynamics in the region well (84% of the
variance is explained), they contain little information on
how the key local environment, local stream flow
dynamics, influences the ecology and evolution of the
birds. The WTD is territorial during breeding and
occupies breeding sites located at river stretches along
the main river as well as at small tributaries with more
variable stream flow regimes. Information on local stream
flow dynamics is restricted to gauged sites and usually
spatially distant from most of the study population’s
Hydrol. Process. 29, 1999–2013 (2015)
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locations; hence, techniques for modelling stream flow for
ungauged sites, or for making PUB, are needed.
The research objectives of this study are as follows:

1. To investigate whether the parsimonious use of
calibration parameters in the DDD model has the
desired effect in parameter identifiability such that we
come closer to the ideal put forward by Parajka et al.
(2013): ‘ideally the relationship between the model
parameters and the catchment characteristics should be
hydrologically justifiable to give confidence for
extrapolation to ungauged basins’

2. To investigate how well DDD can predict in ungauged
basins using regionalized parameters.

3. To investigate whether failure in predicting in
ungauged basins can reveal weaknesses in model
structure or parameterizations.
Figure 1. a. Map of study area, southern Norway with the Lygne basin (bla
square) that are not part of the set of calibrated catchments used to train the m

breeding sites (black triangle)

Copyright © 2014 John Wiley & Sons, Ltd.
4. To provide and evaluate time series of hydrological
elements for ungauged basins where breeding pairs of
the WTD are observed.
DATA AND STUDY AREA

The target area for this study is the Lygne basin situated
in southern Norway (Figure 1a). The Norwegian Water
Resources and Energy Directorate (NVE) operates two
stream gauges, Møska and Tingvatn, in this basin. The
size of the entire basin is 1146 km2, whereas the size of
the catchments Møska and Tingvatn is 121.3 and
272.2 km2 respectively.
The breeding biology of the WTD in the Lygne basin has

been monitored at 145 breeding sites since 1978 (Nilsson
et al., 2011; Figure 1b). A breeding site contains at least one
ck solid line) and the 17 control catchments (outlet marked with a black
ultiple regression equations. b. The Lygne basin with the locations of the

of the white-throated dipper

Hydrol. Process. 29, 1999–2013 (2015)



Figure 1. (Continued)
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nest site, often more, and the most used nest site is defined
here as the main nest site at each breeding site. The WTD
build their nests in the immediate vicinity of running water
(Nilsson et al., 2011) because the nest openings need to be
located directly above running water to flush away all traces
of the nestlings’ activities and thereby avoid nest predation.
The breeding site catchments (BSCs) are thus relatively easy
to define using GIS.
The 25 × 25-m national terrain model (www.statkart.no)

was used and adjusted to the national river network at NVE
(at scale 1 : 50 000) to create a national hydrologically
correct terrain model. This was further used to calculate
both flow direction and flow accumulation. The main nest
site points were first snapped (with a 25-m maximum) to
the nearest stream in the river network to allow for
differences in accuracy between the breeding site coordi-
nates and the river network. These points were used
together with the flow direction raster in a watershed
Copyright © 2014 John Wiley & Sons, Ltd.
function to calculate the BSCs upstream from the breeding
sites. A suite of physiographic CCs has been extracted
through GIS for the 145 BSCs.
The DDDmodel has been calibrated for 101 catchments

in Norway, including Møska and Tingvatn, for flood
forecasting purposes. Out of this set, 84 catchments are the
potential maximum number of catchments from which we
can derive relations between CCs and model parameters.
Among the catchments located in southern Norway, 17
catchments were kept out of the regression analysis so that
the ability of DDD to predict in ungauged basins could be
tested on an independent data set. The set of 17 catchments
includes Møska and Tingvatn and represents a variety in
regard to catchment size (32–1177 km2) and mean
elevation (187–1345 masl). The CCs extracted for the
BSCs were also extracted for all the flood forecasting
catchments (FFCs).
Input data to the DDD model, daily precipitation and

temperature are extracted for all FFCs and BSCs from
interpolated meteorological grids (1 × 1 km2) that provide
daily values of precipitation and temperature for all of
Norway from 1957 to present (www.senorge.no).
Figure 2 shows histograms of the relevant CCs extracted

for FFCs and BSCs. The CCs presented in Figure 2 are all
found, through the regression analysis, to contribute
significantly in the multiple regression equations (MREs)
used for estimating themodel parameters (refer to Equations
(2–8) in the Results section). A much larger set of CCs is
routinely extracted using GIS at NVE, and this set has
been the basis for previous regionalization tasks such as a
low-flow map (Engeland et al., 2008) and an annual
discharge map (Beldring et al., 2003). A new characteris-
tic is, however, the mean of the distance distribution used
for characterizing unit hydrographs used in the DDD
model (refer to the next section for a description of the
hydrological model).
It is clearly seen that there is a high frequency of very

small catchments (<20 km2) amongst the BSCs compared
with the FFCs (Figure 2d). This is also seen in Figure 2a
and f that show the mean of the distance distribution and
catchment length respectively. A substantial fraction of the
FFCs are located at high altitudes that result in a higher
fraction of bare rock compared to the BSCs. CCs such as
lake and bog are similarly distributed for FFCs and BSCs.
METHODS

In evaluating objective 1, we will compare correlations
between model parameters and CCs with those obtained
from similar studies using other hydrological models.
Regressing model parameters with CCs is the only method
that we will employ for the regionalization of model
parameters because parameter identifiability is an objective.
Hydrol. Process. 29, 1999–2013 (2015)
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Figure 2. Histograms of the catchment characteristics for the breeding site catchments (BSCs; shaded bars) and for the 84 catchments for which the DDD
model has been calibrated (unshaded bars)
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For objective 2, we will compare the performance of
DDD using regionalized parameters (DDD-PUB) with the
performance of DDD with calibrated parameters (DDD-
CAL). The definition of successful PUB in this paper is
that the DDD-PUB simulates with precision as close as
possible to DDD-CAL. This measure of success is also
used in previous studies (Seibert, 1999; Young, 2006). It
is not expected that DDD-PUB can do a better simulation
than the calibrated model, although at some locations, the
regressed parameters might be a better representation than
those observed because of errors in observations.
For objective 3, we will attempt to link the deviations

in performance between DDD-PUB and DDD-CAL for
gauged catchments to either model structure or parame-
terizations. Hence, the quest for successful PUB can also
be used to highlight model weaknesses and point in the
right direction for model improvements.
The success of objective 4 will not be completely

assessed in this study. In order to assess the performance of
DDD for the truly ungauged catchments, the breeding sites
of the WTD, we will use dynamic characteristics of flow
Copyright © 2014 John Wiley & Sons, Ltd.
(DCF) suggested by Yadav et al. (2007) to determine
whether the simulations are behavioural, i.e. are probable
predictions of run-off. The DCF used are high flow (i.e. high
pulse count, refer to Clausen and Biggs (2000), medium
flow (the run-off ratio, e.g. run-off/precipitation) and low
flow (the slope of the flow duration curve, e.g. Searcy
(1959)). The high-flow characteristic is considered espe-
cially important as a constraint on biota in perennial
temperate rivers (Clausen and Biggs, 2000) and hence
supposedly the breeding success of the WTD, although
Lytle and Poff (2004) point out that both floods and
droughts are important in regulating water-dependent
population sizes. Whether the simulated time series are of
sufficient quality to explain temporal variability in
population dynamics will be assessed in a future paper.

Hydrological model

The DDDmodel (Skaugen and Onof, 2014) is a rainfall–
run-off model that is coded in the programming language R
(www.r-project.org) and currently runs operationally at
daily and 3-h time steps at the Norwegian flood forecasting
Hydrol. Process. 29, 1999–2013 (2015)
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service. Inputs to the model are precipitation and temper-
ature derived from gridded weather maps. The current
version of DDD differs from the Nordic HBV model
(Sælthun, 1996) in its description of the subsurface and run-
off dynamics. In the subsurface module, the volume
capacity of the subsurface water reservoir M is shared
between a saturated zone with volume S, called the
groundwater zone, and an unsaturated zone with volume
D, called the soil water zone. The actual water volume
present in the unsaturated zone, D, is called Z.
The subsurface state variables are updated after

evaluating whether the current soil moisture Z(t) together
with the input of rain and snowmelt, G(t), represents
more water than field capacity, R, which is set to 30%
(R = 0.3). If so, excess water, X(t), is added to S(t). To
summarize,
Excess water:

X tð Þ ¼ Max
G tð Þ þ Z tð Þ

D tð Þ � R; 0

� �
D tð Þ (1a)

Groundwater:

dS

dt
¼ X tð Þ � Q tð Þ (1b)

Soil water content:

dZ

dt
¼ G tð Þ � X tð Þ � Ea tð Þ (1c)

Soil water zone:

dD

dt
¼ � dS

dt
(1d)

where Q(t) is run-off. Actual evapotranspiration, Ea(t), is
estimated as a function of potential evapotranspiration
and the degree of saturation. Potential evapotranspiration
is estimated as Ep= θcea * T (mm/day), where θcea(mm/
° C day) is the degree–day factor that is positive for
positive temperatures and zero for negative temperatures.
Actual evapotranspiration thus becomes Ea=Ep× (S + Z)/
M and is drawn from Z.
M is a calibration parameter, but the equations for the

run-off dynamics are completely parameterized from
observed catchment features derived using GIS and run-
off recession analysis. Water is conveyed through the soil
to the river network by waves with celerities determined
by the level of saturation in the catchment. The celerities
for the different levels of saturation are estimated by
assuming exponential recessions with parameter Λ, which
varies according to the degree of saturation. The quantiles
Copyright © 2014 John Wiley & Sons, Ltd.
of the distribution of Λ is then assumed to match the
quantiles of saturation, i.e.F Λð Þ ¼ S

M. The celerity vh (m/s)
is associated with the parameter Λ as vh ¼ Λd=Δt, where d
is the mean of the distribution of distances between points
in the catchment to the nearest river reach. The variable d
can be viewed as a measure of river network density. This
distance distribution and that of the river network,
measured from points in the river network to the outlet
give, together with the celerities, distributions of travel
times and consequently unit hydrographs. These unit
hydrographs give the temporal distribution of the run-off
response to input of rain and snowmelt. The experience of
using the DDD model shows that the subsurface water
reservoir M controls the variability of the hydrograph to a
large degree. Low values of M increases the amplitude of
the hydrograph because the entire range of the celerities is
engaged, and vice versa.
Recent developments of DDD include modelling the

distribution of Λ using a two-parameter gamma distribu-
tion (instead of a one-parameter exponential distribution),
and bogs are now included in the model and treated as an
area of overland flow when saturated and a non-
contributing area when not saturated. A distance distri-
bution has been calculated for the bog area within the
catchment, and water is conveyed to the nearest river
reach when the bog is saturated with celerity equal to that
of the estimated overland flow (the 99% quantile of the
celerity distribution). Figure 3 shows the structure of the
DDD model, and further details can be found in Skaugen
and Onof (2014).
Table I shows the parameter file of DDD. Seven

parameters need to be estimated from relationships
between model parameters and CCs. Model parameters
are hereafter denoted by θ with subscripts in order to
clearly distinguish them from CCs.

Model parameter regionalization

The general method for the regionalization of model
parameters in this study is classic and similar to a number
of other studies, e.g. Yadav et al. (2007), Young (2006),
Merz and Blöschl (2004) and Seibert (1999). The DDD
model is automatically calibrated against run-off using an
R-based Monte Carlo Markov chain routine (Soetart and
Petzholdt, 2010) for a number of catchments (in this case,
101 catchments). The calibrated and estimated model
parameters are subsequently related to climatic and
physiographic CCs through multivariate regression. The
model parameters for the ungauged catchments are then
estimated using the regression equations. A certain
calibration on the parameter correcting the precipitation
input, θPc, is carried out, tuning it so that the simulated
mean annual discharge (MAD) is equal to the observed
mean annual run-off at each of the 17 control catchments.
When simulating for the BSCs, θPc is tuned so that the
Hydrol. Process. 29, 1999–2013 (2015)



Figure 3. Structure of the DDD model
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simulated MAD for the BSCs is equal to the regional
estimate determined as the average MAD for Møska and
Tingvatn because they are located inside the target area.
In using this procedure for the BSCs, we assume that
MAD is a variable that exhibits little variation in the
target area, an assumption that is supported by the almost
identical specific MAD for Møska, 58.1 (l/s km2), and
Tingvatn, 58.5 (l/s km2), estimated from the record of
daily run-off values from 1978 to 2012. The MAD thus
represents the only available information on which we
may condition the long-term water balance when
predicting for the ungauged basins. A direct measure of
goodness of fit such as the Nash–Sutcliffe efficiency (NSE)
criterion (Nash and Sutcliffe, 1970) for the simulations for
the individual BSCs is, of course, not available.
The calibrated performance of DDD for the FFCs

varies for several reasons, including model structure
uncertainty, the quality of the meteorological input data
(precipitation and temperature) and the quality of
measured run-off data. Given this variability in perfor-
mance, the question of whether we should attempt to
derive the regression relationships between CCs and
model parameters from a subset of the FFCs, for
example, a subset of well-performing models, can be
posed. In assuming that DDD performs well, for the
right reasons (refer to Kirchner, 2006) and hence that the
parameter values are well defined, doing the regression
analysis on such a subset could provide good results. A
possible risk is that the subset does not carry sufficient
information for covering the entire range of combina-
tions of CCs, and we may overfit the regression models.
Another aspect is that there are still parameters in the
DDD model, especially related to snowmelt, that when
Copyright © 2014 John Wiley & Sons, Ltd.
calibrated, can take on rather non-physical values,
suggesting a degree of non-identifiability of parameters
and a tendency for calibrated parameters to compensate
for model structure and parameter errors. Such param-
eters are, for example, the degree–day factor for
snowmelt, θCX, the threshold temperature for snowmelt,
θTS, the threshold temperature for solid/liquid precipita-
tion, θTX, and the capacity of snow to contain liquid
water, θWs, (Table I). Given such problems, a regional
subset of FFCs may be favourable, suggesting that
spatial proximity, as well as the CCs, also has an
influence on the parameters to be estimated (refer to
Merz and Blöschl, 2004; Blöschl et al., 2013 and
Parajka et al., 2013). We settled on three different sets
of calibrated catchments as the basis for deriving the
regression equations predicting model parameters from
the CCs.
Set 1 Parameters from all 84 calibrated DDD models
were used to relate model parameters to CCs.
Set 2 Parameters from the subset of calibrated DDD
models where the NSE from the validation data set had
to exceed 0.65 together with the constraint that the
estimated shape and scale parameters of the subsurface
celerity distribution (θGsh and θGsc, Table I) estimated
from the calibration and validation set of run-off data
should not deviate more than 25%. These constraints
provided us with a subset of 22 calibrated models from
which we could relate model parameters and CCs.
Set 3 Parameters from 16 of the calibrated DDD models
located in the region of southern Norway close to the target
area were used to relate model parameters to CCs.
Hydrol. Process. 29, 1999–2013 (2015)



Table I. Parameters of the DDD model with comments and method of estimation

Parameter Comment Method of estimation Value Reference

Hypsographic
curve

11 values describing the quantiles
0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

GIS

θWs (%) Max liquid water content in snow Within recommended
range for the HBV model

5 Sælthun (1996)

Hfelt Mean elevation of catchment GIS
θTlr (°C/100m) Temperature lapse rate(per 100m) Within recommended range

for the HBV model
�0.65 Sælthun (1996)

θPlr (mm/100m) Precipitation gradient (mm per 100m) Within recommended range
for the HBV model

0.01 Sælthun (1996)

θPc Correction factor for precipitation Calibrated to give mean
annual specific
discharge of region

θSc Correction factor for precipitation as snow Regressed with θPc
θTX (°C) Threshold temperature rain/snow Standard value 1.0 Sælthun (1996)
θTS (°C) Threshold temperature melting/freezing Standard value 0.0 Sælthun (1996)
θCX (mm/°C/day) Degree–day factor for melting snow Regressed
θCFR (mm/°C/day) Degree–day factor for freezing Within recommended range

for the HBVmodel
0.02 Sælthun (1996)

Area (m2) Catchment area GIS
maxLbog (m) Max of distance distribution for bogs GIS
midLbog (m) Mean of distance distribution for bogs GIS
Bogfrac Fraction of bogs in catchment GIS
Zsoil Areal fraction of zero distance to the

river network for soils
GIS

Zbog Areal fraction of zero distance to the
river network for bogs

GIS

θNOL Number of saturation levels Standard value 5 Skaugen and Onof (2014)
θcea (mm/°C/day) Degree–day factor for evapotranspiration Regressed
θR Ratio defining field capacity Standard value 0.3 Skaugen and Onof (2014)
θGsh Shape parameter of gamma distributed celerities Regressed
θGsc Scale parameter of gamma distributed celerities Regressed
θCV Coefficient of variation for spatial distribution

of snow
Regressed

θrv (m/s) Mean celerity in river Standard value 1.0 Skaugen and Onof (2014)
mRd (m) Mean of distance distribution of the

river network
GIS

sRd (m) Standard deviation of distance distribution
of the river network

GIS

Rdmax (m) Max of distance distribution in river network GIS
θM (mm) Max subsurface water reservoir Regressed
d (m) Mean of distance distribution for hillslope GIS
dmax (m) Max of distance distribution for hillslope GIS

Some parameters have fixed values obtained through experience in calibrating DDD for gauged catchments in Norway. These values are within the
recommended range for the HBV model (Sælthun, 1996). Other parameter values are assigned standard values as suggested in the literature. The GIS
analyses are carried out using the national 25 × 25-m digital elevation model (www.statkart.no).
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Correlation analysis

An exploratory correlation analysis between model
parameters and CCs was carried out for the three data
sets. Spearman rank correlation was used because this is
more robust and presupposes no fixed shape of possible
functional relationships (Seibert, 1999). Figure 4 shows
the correlations. The points in the plots are scaled for
significance: Large points signify significant correlations
(refer to legend in Figure 4i).
Copyright © 2014 John Wiley & Sons, Ltd.
RESULTS

Relations between CCs and model parameters

The correlations between model parameters and CCs are
not very high (Figure 4), but several are found to be
significant. Two relationships come out quite clearly with
high, significant correlations, that of the correlation
between the areal percentage of lakes, % Lake, (or effective
lake, %ELake, which takes into account the location of the
lake in the catchment) and θM (Figure 4b and e) and that of
Hydrol. Process. 29, 1999–2013 (2015)
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Figure 4. Correlations between model parameters and catchment characteristics for set 1 (black filled circles), set 2 (grey filled circles) and set 3 (white
filled circles). The circles are scaled according to significance (p-value, Figure 4 i))

Table II. Coefficient of determination (multiple R2) and their
significance (p-value) in brackets for the multiple regression

equations relating catchment characteristics to model parameters
for the data sets 1–3

Model
parameters

Set 1 (84
catchments)

Set 2 (22
catchments)

Set 3 (16
catchments)

θGsh 0.45 (0.0000) 0.53 (0.0008) 0.58 (0.0037)
θGsc 0.35 (0.0000) 0.62 (0.0005) 0.63 (0.0015)
θM 0.40 (0.0000) 0.64 (0.0000) 0.48 (0.0029)
θCX 0.52 (0.0000) 0.67 (0.0001) 0.78 (0.0002)
θCV 0.23 (0.0000) 0.35 (0.0158) 0.40 (0.0371)
θcea 0.32 (0.0000) 0.36 (0.0029) 0.82 (0.0000)
θSc 0.20 (0.0002) 0.23 (0.0813) 0.61 (0.0004)
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the correlation between the percentage of forest and bare
rock with θCX (Figure 4g and h).We also note that although
the correlations for set 1 are often lower than those for sets
2 and 3, we clearly see more significant correlations for set
1, suggesting that more robust regression models may be
found using set 1.
MREs estimating model parameters were determined

for sets 1–3. Different combinations of the CCs
presented in Figure 2 were used. Each CC had to
contribute significantly (with a p-value< 0.05) in order
to be included in the regression equation. Table II
shows the coefficient of determination (multiple R2)
and their significance (p-value) for the different data
sets. We see that sets 2 and 3 have a higher coefficient
of determination than set 1, but the p-values for set 1
are the lowest for all model parameters.
We also tested the ability of the MREs derived from the

different data sets to estimate model parameters for the
Copyright © 2014 John Wiley & Sons, Ltd.
BSCs. The histograms in Figure 2a–i show that the CCs
for the BSCs take on different values than that for the
FFCs. It will hence be a measure of robustness of our
Hydrol. Process. 29, 1999–2013 (2015)
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method if the MREs derived from the different data sets
produce model parameters that are behavioural (for
example, that there are no illegal values such as negative
parameters for the gamma distribution). In Figure 5, we
show the estimated model parameters for the BSCs using
MREs from sets 1–3 compared with those obtained from
the 17 calibrated control catchments. We see that the
model parameters estimated using the MREs from set 1
are both (i) all behavioural and (ii) closer to those
obtained from the calibrated control catchments. Both set
2 and set 3 produce negative values for the scale
parameter of the celerity distribution, θGsc, and negative
values for the θCV of the snow distribution. Set 2 also
gives unrealistic values of θM. From these results, it was
decided to proceed with the MREs obtained from set 1.
Equations (2–8) show the MREs for the model parameters
derived from set 1.

θGsh ¼ 1:128þ 0:068*%ELake� 0:003*%Brock (2)

θGsc ¼ 0:757� 0:079* log d
� �� 0:025* log %ELakeð Þ � 0:042 log Clenð Þ (3)

θM ¼ 4:925� 0:129* log d
� �þ 7:15*%Lake (4)

θCX ¼ exp 4:82� 0:456* log d
� �� 0:107* log %Bogð Þ þ 0:000115*

�

Area� 0:009* Clen� 0:014*%Forest � 0:007*%Brock (5)
Figure 5. Model parameters estimated for the breeding site catchments (BS
catchments (denoted a

Copyright © 2014 John Wiley & Sons, Ltd.
θCV ¼ 0:228� 0:0255 log %ELakeð Þ þ 0:0025*%Brock (6)

θcea ¼ exp 0:047∓0:005*%Forest � 0:304* log Melevð Þð (7)

θSc ¼ exp �0:0965� 0:072 log %Bogð Þ þ 0:339* log θPcð Þð Þ (8)

Most of Equations (2–8) are quite simple involving
only two or three CCs. The MRE for the degree–day
factor for snowmelt, θCX, (Equation 5) is the exception.
The equation is very complex and quite probably
overfitted. Multicolinearity may also be a problem in
Equation 5 because obviously correlated CCs (%Area
and C _ len) are included in the equation. This is not the
case in the other equations. We note that CCs describing
lake percentage and drainage density (% Lake, %ELake
and d) are important for the run-off dynamics, whereas
CCs describing landscape types (%Forest, %B _ rock-
and %Bog) are important for describing snow distribu-
tion, snowmelt and evapotranspiration.

Predictions for the 17 control catchments

For the 17 control catchments, we can directly compare
the performance of DDD with model parameters
estimated using the MRE from set 1 (DDD-PUB) with
the performance of DDD calibrated to run-off observa-
Cs) for data sets 1–3 compared with those calibrated for the 17 control
s Cal in the figure)

Hydrol. Process. 29, 1999–2013 (2015)



Table IV. Correlations (Spearman) between deviations of NSE
between calibrated DDD model (DDD-CAL) and DDD model
with regionalized parameters (DDD-PUB) with deviations
between calibrated and fixed/regressed model parameters

Parameter ΔNSECal ΔNSEVal

ΔWs �0.27 (0.30) �0.17 (0.52)
ΔTLR �0.38 (0.14) �0.10 (0.55)
ΔPLR 0.35 (0.17) 0.25 (0.33)
ΔPC 0.48 (0.05) 0.50 (0.04)
ΔSC �0.38 (0.13) �0.40 (0.11)
ΔTX �0.30 (0.25) �0.11 (0.67)
ΔTS 0.17 (0.51) 0.16 (0.53)
ΔCX �0.24 (0.35) �0.26 (0.31)
ΔCV 0.56 (0.02) 0.53 (0.03)
Δcea 0.28 (0.27) 0.30 (0.24)
ΔGsh �0.42 (0.09) �0.42 (0.09)
ΔGsc �0,16 (0.55) �0.16 (0.55)
Δrv �0.07 (0.78) �0.06 (0.81)
ΔM 0.22 (0.41) 0.13 (0.63)

p-values for the correlation are in brackets.
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tions (DDD-CAL). DDD-CAL has been calibrated for a
data set with records from the period 1995–2011 and
validated with a data set with records from the period
1981–1995. DDD-PUB is evaluated for both data sets.
Table III shows the performance measured with the NSE.
The difference in NSE between DDD-PUB and DDD-
CAL is less than 0.1 for ten out of the 17 catchments for
both the calibration and validation data set. Four out of
the 17 catchments have NSE differences higher than 0.2.
The median NSE for DDD-PUB for the two data sets is
NSE = 0.72 (calibration data set) and NSE = 0.66 (vali-
dation data set). We also note that for the catchments
located within the target area, Tingvatn and Møska, the
NSE for DDD-PUB is very good, NSE = 0.83–0.86.

Prediction performance versus parameterizations

To investigate why DDD-PUB works well for some
catchments and poorly for others, we conducted an
analysis where we relate the deviations in NSE results
between DDD-CAL and DDD-PUB to deviations be-
tween calibrated and fixed/regressed model parameters.
Deviations in NSE from both the calibration and
validation data sets were assessed. An exploratory
correlation analysis showed generally low correlations
and high p-values (Table IV). In a regression analysis, we
searched for the number of significant predictors that
explained as much as possible the variability of the
deviations in NSE. We adopted a forward approach
Table III. Performance (NSE) for calibrated DDD (DDD-CAL)
and DDD model with regionalized parameters (DDD-PUB) for
the 17 control catchments for calibration (cal) and validation (val)

data sets

Catchment
DDD-

CAL_cal
DDD-

CAL_val
DDD-

PUB_cal
DDD-

PUB_val

Etna 0.88 0.79 0.78 (0.1) 0.67 (0.12)
Orsjoren 0.83 0.88 0.29 (0.54) 0.6 (0.28)
Tansvatn 0.86 0.86 0.63 (0.23) 0.66 (0.2)
Horte 0.7 0.66 0.68 (0.02) 0.62 (0.04)
Austenaa 0.83 0.71 0.81 (0.02) 0.64 (0.07)
Myglevatn 0.83 0.81 0.78 (0.05) 0.73 (0.08)
Møska 0.9 0.85 0.86 (0.04) 0.83 (0.02)
Tingvatn 0.91 0.91 0.83 (0.08) 0.85 (0.06)
Knabaani 0.66 0.66 0.57 (0.09) 0.57 (0.09)
Aardal 0.86 0.81 0.83 (0.03) 0.83 (0.02)
Bjordal 0.78 0.74 0.7 (0.08) 0.63 (0.11)
Hetland 0.8 0.76 0.78 (0.02) 0.74 (0.02)
Djupadalsvatn 0.83 0.78 0.81 (0.02) 0.75 (0.03)
Djupevad 0.57 0.55 0.52 (0.05) 0.49 (0.06)
Reinosvatn 0.76 0.7 0.53 (0.23) 0.37 (0.33)
Gjuvvatn 0.81 0.76 0.3 (0.51) -0.1 (0.86)
Storeskar 0.86 0.89 0.72 (0.14) 0.77 (0.12)
Median NSE 0.83 0.78 0.72 0.66

The deviation in NSE between DDD-CAL and DDD-PUB is found in
brackets in columns 4 and 5.

Copyright © 2014 John Wiley & Sons, Ltd.
starting with the predictor most correlated to ΔNSECal

that according to Table IV is ΔCV. Predictors were added
and retained if they contributed significantly (p-values
0.05) to the regression equation for both series of ΔNSE.
This procedure shows that the deviations between the
calibrated and fixed/regressed parameters θCV, θCX and
θTS best explained the deviations in NSE between
DDD-CAL and DDD-PUB. The coefficients of determi-
nation were R2 = 0.66 (p-value = 0.002) and R2 = 0.69
(p-value = 0.001) for the calibration and validation data
sets respectively. This split-sample forward procedure for
regression analysis proved to be a relatively quick way to
determine the significant predictors and is suggested as a
procedure for testing the reliability of regression models
by Kleinbaum et al. (2008, p. 398)

Predictions for the BSCs

In order to evaluate the predictions for the truly
ungauged catchments, the BSCs, we used hydrological
indices that can be assessed for the ungauged catchments
without using measured run-off to see whether the
hydrological simulations for the BSCs fall within
reasonable ranges for these indices. We have chosen
the indices suggested by Yadav et al. (2007), the slope of
the flow duration curve at 30 and 70% to describe the
medium flow, the high pulse counts (threshold is set to
three times the median flow) for high flows and the run-
off ratio (run-off/precipitation) for low flows. Figure 6
shows box plots of the indices for the BSC and the control
catchments. We see that the indices computed for the
BSCs are well within the range determined by observed
run-off at the 17 control catchments for the rainfall ratio
(Figure 6a) and for the slope of the flow duration curve
Hydrol. Process. 29, 1999–2013 (2015)
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(Figure 6b). For the high pulse count (Figure 6c), there is
a slightly larger range for high values.
DISCUSSION

The correlation analysis of relationships between CCs and
model parameters shows significant but not very high
correlations (Figure 4). It appears that using the set of 84
catchments (set 1) for relating CCs to model parameters
provides many significant correlations, and some are quite
high. The most convincing correlation is that of the
capacity of the subsurface reservoir, θM, and the lake
characteristics, % Lake and %ELake. This is as expected,
given that a large subsurface reservoir (i.e. large θM)
dampens the amplitudes of the hydrograph, which is also
a well-known effect of lakes. The CCs that are related to
the size of the catchment (%Area and C _ len) and the
lake characteristics (% Lake and % ELake) are all
significantly correlated with the parameters of the
distribution of subsurface celerity (θGsh and θGsc). This
is also hydrologically justifiable in that increasing
catchment size and the presence of lakes will dampen
Figure 6. Box plots showing the hydrological indices (a) run-off ratio, (b) slo
results for observed run-off at the 17 control catchments, whereas the grey box

Copyright © 2014 John Wiley & Sons, Ltd.
the variability of saturation and hence, according to the
assumptions used in deriving the basis for the DDD
model, the variability of subsurface celerity. The
parameters related to snow accumulation, snowmelt and
evapotranspiration, (θCX, θCV, θSc and θcea) are signifi-
cantly correlated to descriptions of landscape types
(%Bog, %Forest and %B _ rock). This is also a realistic
result because it is well known that the spatial distribution
of snow and especially evapotranspiration is related to
landscape types (e.g. Dingman, 1994). According to
Figure 4, all model parameters are significantly correlated
with some CC. This result differs from studies where
more parameter-rich hydrological models are used. In
Seibert (1999), only six out of the 13 parameters in the
HBV model were found to be related to CCs, and in Merz
and Blöschl (2004), rather weak correlations were found
between CCs and model parameters of the HBV model,
but no measure of significance was given. In Peel et al.
(2000), only one out of seven parameters in the SIMHYD
model was found to be significantly correlated to CCs
when analysing 331 catchments from various climatic
regions in Australia. More parameters, however, were
significantly correlated with climatic characteristics.
pe of flow duration curve and (c) high pulse count. The white box shows
shows results for simulated run-off at the breeding site catchments (BSCs)

Hydrol. Process. 29, 1999–2013 (2015)
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Themedian NSE for DDD-PUB for the 17 catchments is
0.72 for the calibration data set and 0.66 for the validation
data set. The difference for the calibration and validation
data sets is because of DDD-PUB being ‘calibrated’ to
produce aMAD equal to that of the calibration data set. The
median NSE results in the present study compare very well
with those reported for cold climate in the meta-study of
PUB by Parajka et al. (2013). In this study, we find the
compilation and comparisons of results from nine studies
on prediction in ungauged basins for cold climate. Out of
the nine studies, eight were carried out using the HBV
model. The results from the present study would have
ranked amongst the best 30% if they were included in
Parajka et al. (2013, Figure 2 therein). Of course, the
studies are not directly comparable, but, nevertheless, the
results presented here are encouraging.
The analysis where deviations in NSE between DDD-

CAL and DDD-PUB were related to deviations between
calibrated and fixed/regressed model parameters is helpful
in designing the strategy to improve themodel structure. It is
interesting that the analysis concludes that the most possible
reason for poor results of DDD-PUB is related to the
parameterization of the spatial distribution of snow (θCV )
and snowmelt (θCX and θTS). These are exactly the modules
identified in the DDD model where further reduction of
calibration parameters is due. In Skaugen and Randen
(2013), a procedure for estimating the spatial variability of
snow was suggested. The procedure is parameterized solely
from the observed spatial variability of precipitation (liquid
and solid) and calculates the spatial frequency distribution
of snow water equivalent (SWE). Implementing this new
procedure in the DDDmodel is in progress and will replace
the current procedure that uses the calibrated coefficient of
variation of the lognormal distribution (θCV) to express the
spatial frequency distribution of SWE. An energy balance
approach may be a suitable alternative model for snowmelt
that enables us to replace the parameters θCX and θTS.
Several such models exist (Liston, 1995; Tarboton and
Luce, 1996; Walter et al., 2005). Ongoing work at NVE
strives to implement an energy balance approach to
snowmelt in DDD that uses only precipitation and
temperature as input and calculates other important
variables, such as wind and radiation, either as fixed
regional estimates or as functions of precipitation and
temperature. Precipitation and temperature are the only
variables for which we have a reliable supply of updated
time series from the whole of Norway.
Another interesting aspect of the analysis of deviations is

that the parameters in the DDD model that are identified
fromGIS (the distance distributions) do not appear to be the
source of deviations in the NSE between DDD-CAL and
DDD-PUB. The same argument can be used regarding the
celerities of the subsurface flow that are estimated from run-
off recession analysis forDDD-CALand fromMREs for the
Copyright © 2014 John Wiley & Sons, Ltd.
DDD-PUB model. Also, deviations in these parameters do
not explain the deviations in NSE. These results give
confidence in the model structure of DDD. If the model
structure represented by these parameters was seriously
flawed, one would expect deviations in these parameters to
explain the observed deviations in the NSE. The parameters
significantly explaining the deviations, however, are the
parameters left in DDD that clearly have ‘effective’
properties, i.e. they represent a range of processes and
scales and can compensate for structural model errors.
The NSE values for DDD-CAL and DDD-PUB are

similar, and, for the two catchments located in the centre
of the target area Tingvatn and Møska, the DDD-PUB
results are very good (NSE = 0.83–0.86), lending
credibility to the simulations for the BSCs. We note that
the NSE for these two catchments is very high for the
calibrated model, signifying well-behaved catchments
with respect to hydrological response and good-quality
data (Table III). This does not necessarily mean that these
high-quality simulations can be extrapolated to the BSCs,
but the fact that DDD-PUB also gives very good results
for these two catchments is an indication that the MREs
work well for this region. The only indices calculated for
the BSCs that are outside the range of those of the control
catchments are for the high pulse counts (Figure 6b). A
possible explanation is that the BSC have a much higher
frequency of small catchments (Figure 2d) and hence a
potential for a higher frequency of flashy catchments that
may respond very quickly to intense precipitation or
snowmelt. Another way of assessing the quality of the
simulated BSC run-off series is, of course, to investigate
whether simulated run-off (or perhaps some other
simulated hydrological variable such as snow) has
implications for the biology of the WTD, i.e. that they
explain the variation in population dynamics and
individual breeding parameters of the WTD. If such
relations are found, then we may have a justified belief
that the simulated series are realistic.
There is a lower limit regarding the catchment size and

the accuracy of the CCs estimated by GIS. At a catchment
size of 1 km2, there are 1600 cells of 25 × 25m2. This is
considered a minimum necessary number of cells in order
to have reasonably robust estimates for the CCs. Only five
BSCs were smaller than 1 km2 (17 BSCs are below
2 km2), and simulated stream flow from these has to be
regarded as especially uncertain.
CONCLUSIONS

In this study, we have explored the use of the rainfall–
run-off model, DDD, for PUB. The challenge was to
simulate run-off at 145 ungauged catchments (BSCs)
where breeding pairs of the WTD (C. cinclus) have been
Hydrol. Process. 29, 1999–2013 (2015)
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monitored since 1978. The method for determining the
model parameters for the ungauged basins was similar to
that of many previous studies, namely that of relating model
parameters to CCs through MREs. The contribution of this
study, however, has been to apply this classic method to a
new parameter parsimonious model, the DDD. Possibly
because of the transparent model structure of DDD, many
significant and quite high correlations between model
parameters and CCs were found, and it was shown that
CCs describing lake percentage and size of the catchment
were important in parameterizing the dynamics of the
rainfall–run-off model. Landscape types were important in
parameterizing snow accumulation, snowmelt and evapo-
transpiration. Relations between CCs and model parameters
from 84 calibrated catchments (set 1) gave the most robust
set of MREs. The regression equations all gave behavioural
estimates of the model parameters, both for 17 control
catchments and for the BSCs.
DDD-PUB gave somewhat less precise simulations of

run-off compared with DDD-CAL when assessing results
for the 17 control catchments. However, the two
catchments located within the basin of Lygne, the region
of the breeding sites of the WTD, had very good
simulations using DDD-PUB, which is encouraging with
respect to the simulations for the BSCs. The result varied
for the other catchments, and an analysis relating
differences in NSE with differences in calibrated and
fixed/regressed model parameters identified the parame-
ters describing the spatial distribution of snow (θCV) and
snowmelt (θCX and θTS) as significant in explaining the
discrepancy in NSE between DDD-CAL and DDD-PUB.
The quality of the run-off simulations for the BSC was

assessed through comparing calculated indices describing
high, medium and low flows with those of observed run-off
at the 17 control catchments. The indices for the BSC were,
in general, well within the range defined by observed run-off
with a small exception for the indices of high flow, which
were slightly higher for the BSCs. The increased frequency
of high flows can be ascribed to the higher frequency of
small, and possibly flashy, catchments amongst the BSCs.
Future work includes implementing calibration-free

algorithms for snow distribution and snowmelt in DDD
and repeat the analysis described in this paper. A further
reduction of calibration parameters is, at least by these
authors, perceived as a promising and necessary way ahead
for PUB and to gain insight in hydrological processes.
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