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Summary 
Outputs of global or regional climate models (GCM/RCMs) are often flawed with 
systematic biases despite recent progress in climate modelling. Modelling results can be 
very different from observations, and this can hamper their direct use in climate impact 
studies. Moreover, impact models often require data of higher spatial resolution than 
climate models usually can provide. A post-processing of GCM/RCM outputs is therefore 
necessary to obtain plausible time series at an appropriate scale for use in local impact 
studies. It is, however, important to bear in mind the drawbacks of post-processing when 
interpreting the results of climate impact studies based on post-processed climate data.  

An empirical quantile mapping method (EQM) has been used to bias-correct and downscale 
precipitation and temperature projections for Norway to provide appropriate input data for 
an assessment of climate change effects on hydrology. An ensemble of ten EURO-
CORDEX GCM/RCM simulations, each representing two alternative emission pathways 
(RCP4.5 and RCP8.5), were bias-corrected. The original GCM/RCM outputs with a 
resolution of 12.5 x 12.5 km were first re-gridded to a 1 x 1 km scale using a simple nearest 
neighbour method. ‘seNorge’ precipitation and temperature gridded data, which also have 
a 1 km resolution, were then used as the ‘observed’ data for the bias correction procedure. 
A transfer function based on empirical cumulative distribution functions for both observed 
and modelled variables in the control period was applied to correct values from the climate 
models quantile by quantile so that they yield a better match with the observed. Calendar-
month and grid-cell-specific transfer functions were derived and they were used on daily 
simulated data for both control and projection periods. For precipitation, the probability of 
wet days was first calculated from the observational dataset on a monthly basis and 
modelled precipitation was modified accordingly with the same probability prior to 
correction.  

To ensure that the bias-adjustment of future projections would not lead to unreasonably 
high or low values due to the extrapolation method, a quality control procedure relying on 
the original climate change signals was applied. The results show that the procedure is 
capable of removing ‘hot-spots’ which are evident in some of the corrected projections and 
rectifying the over-adjusted projections. 

These precipitation and temperature datasets covering the period 1971-2100 were then 
forced with a spatially distributed, gridded version of the HBV precipitation-runoff model 
to generate daily time series of different hydrological components such as soil moisture 
deficit, runoff, evapotranspiration, snow water equivalent and groundwater. These high-
resolution climate and hydrological datasets, despite their limitations, represent a valuable 
data source for different types of impact studies at a national and local scale. 

 



 

6 
 

1 Introduction 
What will happen to water resources in Norway in a changing climate? That was one of the 
keys questions that the government-commissioned report ‘Klima i Norge 2100’ (Hanssen-
Bauer et al., 2015) attempted to answer. This report gives a brief description of the high-
resolution climate and hydrological projections used in ‘Klima i Norge 2100’ and how 
these datasets were derived.  

Global climate models (GCMs) which are able to describe the governing processes in the 
atmosphere, ocean, land surface and sea ice are an important tool in assessing climate 
change. GCMs project future precipitation and temperature usually at a horizontal grid 
scale of 100 x 100 km. This resolution is considered to be too coarse to properly resolve 
topographic effects. Results from GCMs are hence often dynamically downscaled using 
regional climate models (RCMs). However, compared with actual landscape characteristics 
at an RCMs resolution (~12 x 12 km at best), many important details are still lacking 
because of the complex and highly variable topography, especially in Norway. Impact 
models often have to deal with processes at a finer scale and therefore require data of higher 
spatial resolution than the climate models normally can provide. 

In addition, outputs of GCM/RCMs are often flawed with systematic biases. This is due to 
inadequate knowledge of key physical processes and the simplifications of the natural 
heterogeneity of fine-scaled climate phenomena. Figure 1 shows an example where the 
climate model significantly underestimates the mean monthly precipitation averaged over 
the whole country relative to observations for the period 1971-2000. The model also 
apparently underestimates the mean monthly temperature, although this may, at least in 
part, be due to a mismatch between the elevation of the climate model grid cell and the 
actual elevation of the land surface in that grid cell. In any case, these values need to be 
adjusted before they can be used to represent the surface temperature. Generally, the 
climate projections for Norway show an apparent negative bias in temperature (i.e. 
simulated temperatures are too cold) and substantial precipitation biases, both positive and 
negative. If a hydrological model is forced with these ‘flawed’ data, the simulated 
hydrological responses will inevitably be very different from what have been observed. 
Snowmelt will start considerably later in the snowmelt season and the timing of snowmelt 
floods will be delayed, often giving higher flood magnitudes (Fig. 2). Altered precipitation 
and temperature patterns induced by model biases can affect snow accumulation and 
snowmelt patterns and consequently runoff generation processes. As a result, the simulated 
hydrological regime and seasonal flow patterns may differ significantly from observed 
patterns, and this mismatch will also have an effect on the simulated hydrological response 
to climate change. A post-processing of GCM/RCM outputs is therefore necessary to obtain 
plausible time series at an appropriate scale for use in local impact studies. An example of 
the effects of bias-correction on estimating mean monthly precipitation and temperature 
are shown in Figure 1. The corrected data give a better match than uncorrected when they 
are compared to the observed. 
 
The bias-correction procedure adopted in this report also includes a downscaling 
component, which involves transforming the climate patterns simulated at a coarse grid 
resolution to the finer spatial resolution of interest. The term bias-correction refers to the 
removal of systematic biases in simulated values relative to observed data, which, in 
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principle, reflect the ‘true values’. Typically, this procedure is used to correct simulated 
data for a period in which observations are available, in this case, the control period. For 
the future projections periods, observations are not available, so one cannot ‘correct’ 
relative to ‘true’ values, but can only adjust the values based on the correction established 
for the control period. We, therefore, use the term ‘bias-adjustment’ to distinguish the 
procedure used for future periods with the ‘bias-correction’ used for the control period. 
Following this post-processing, a spatially distributed, gridded version of the HBV 
precipitation-runoff model was forced with the post-processed climate data. 
 

 

Figure 1. Mean monthly precipitation (upper panel) and mean monthly temperature (lower 

panel) averaged over the whole country for the period 1971-2000. The green line refers to 

observations based on seNorge data. The red line represents an example of original RCM 

outputs (uncorrected). The blue dashed line denotes the bias-corrected RCM outputs.   

 

 

Figure 2. Mean monthly runoff averaged over the whole country for the period 1971-2000. 

Runoff was simulated by a distributed, gridded version of the HBV model. The green and red 

lines refer to runoff simulations using observed (seNorge) inputs and original (uncorrected) 

RCM inputs, respectively. The blue dashed line represents runoff simulations using the 

corrected RCM inputs.  
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2 Data 

2.1 EURO-CORDEX climate projections 
Climate impact studies rely on climate input data, and more specifically, precipitation and 
temperature, which are the two most important driving variables for hydrological 
modelling. The climate input data that have been used in ‘Klima i Norge 2100’ come from 
an ensemble of ten EURO-CORDEX runs (Jacob et al., 2014; see also http://www.euro-
cordex.net/), resulting from five GCM and four RCM combinations, see Table 1.  

Global climate 
model 

Ensemble 
member 

Regional 
climate model 

Time period 
 

Institution 

CNRM-
CERFACS-

CM5 

r1i1p1 CCLM4-8-17 1971-2100 Climate Limited-area 
Modelling Community 

CNRM-
CERFACS-

CM5 

r1i1p1 RCA4 1971-2100 Swedish 
Meteorological and 

Hydrological Institute 

ICHEC-EC-
EARTH 

r12i1p1 CCLM4-8-17 1971-2100 Climate Limited-area 
Modelling Community 

ICHEC-EC-
EARTH 

r3i1p1 HIRHAM5 1971-2100 Danish Meteorological 
Institute 

ICHEC-EC-
EARTH 

r1i1p1 RACMO22E 1971-2100 Royal Netherlands 
Meteorological Institute 

ICHEC-EC-
EARTH 

r12i1p1 RCA4 1971-2100 Swedish 
Meteorological and 

Hydrological Institute 

MOHC-
HadGEM2-ES 

r12i1p1 RCA4 1971-2100 Swedish 
Meteorological and 

Hydrological Institute 

IPSL-CM5A-
MR 

r1i1p1 RCA4 1971-2100 Swedish 
Meteorological and 

Hydrological Institute 

MPI-ESM-LR r1i1p1 CCLM4-8-17 1971-2100 Climate Limited-area 
Modelling Community 

MPI-ESM-LR r1i1p1 RCA4 1971-2100 Swedish 
Meteorological and 

Hydrological Institute 

Table 1. Overview of GCM/RCM combinations used from EURO-CORDEX.  

Only the EUR-11 outputs were used, which have a spatial resolution of approximately 12.5 
x 12.5 km. Two emission scenarios based on IPCC’s Representative Concentration 
Pathways (RCPs) were adopted (van Vuuren et al., 2011). RCP4.5 represents a medium 
emission scenario in which the greenhouse gases will slowly increase until approximately 
2040 and then a reduction will occur later on. RCP8.5 refers to the most severe scenario, 
giving a future with continuously increasing greenhouse gases. The time period simulated 
by the climate models in the EURO-CORDEX initiative varies, but the latest starting year 
is 1970. All simulations of the control or historical period, regardless of their starting year, 
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end in 2005. The simulated ‘future’ period is 2006-2100 and is designated as the projection 
period. Since the reference period for present climate in ‘Klima i Norge 2100’ is 1971-
2000, and the two future periods are 2031-2060 and 2071-2100, all analyses in this report 
and the post-processed datasets available on the Norwegian Centre for Climate Services 
(NCCS) website span the period 1971 to 2100. 

2.2 ‘seNorge’ datasets 
Accumulated daily precipitation and daily mean temperature observations are routinely 
used to produce maps of precipitation and temperature with a 1 km horizontal resolution 
for the whole of Norway. These gridded maps are updated on a daily basis and published 
on the website ‘seNorge.no’. The method of triangulation and 2D-ordinary kriging are 
applied to spatially interpolate precipitation and temperature observations, respectively, to 
obtain values at the desired 1 km resolution. For further details of the interpolation 
procedure, see Mohr (2008). These high-resolution seNorge datasets of precipitation and 
temperature (version 1.1) represent the best available observational data for the whole of 
Norway at the time this work was undertaken. These datasets begin in 1960 and were 
therefore used as the observational data required to adjust the climate model biases.  

 

3 Method 
The original climate model outputs were first re-gridded to a 1 x 1 km grid using a simple 
nearest neighbour method. The seNorge precipitation and temperature datasets from the 
control period were treated as ‘observed’ data and used for bias-correction and bias-
adjustment procedures. The precipitation projections were corrected/adjusted separately 
and independently from temperature projections.  

3.1 Wet-day correction 
Since RCM outputs tend to give more rainy days than the observed (Frei et al., 2003), wet-
day correction was carried out prior to bias-correction and bias-adjustment of precipitation. 
In this procedure, monthly wet-day threshold values are derived for each climate model, 
such that the frequency of wet-days based on values above this threshold is equal to the 
frequency of wet-days in the observed data for a given month and a given grid cell in the 
dataset. Modelled precipitation values that are less than the threshold values are set to zero. 

3.2 Empirical quantile mapping  
Since the post-processing procedure was intended to be applied to every grid cell and to all 
precipitation and temperature projections, each containing over 130 years of data, it was 
obvious that the chosen method had to be computational efficient if the task was to be 
completed within a reasonable timeframe. Sorteberg et al. (2014) evaluated different 
distribution mapping bias-correction methods and found that no method performed better 
than the others in general, although all possessed some advantages and disadvantages, 
depending on the evaluation criterion used.   

In this study, an empirical quantile mapping method (EQM) was adopted to bias-correct 
and bias-adjust the simulated precipitation and temperature projections (Gudmundsson et 
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al., 2012). This method has a computational advantage relative to theoretical distribution-

based mapping methods since it does not assume a theoretical distribution, such as a 

Gamma distribution for precipitation. Fitting a theoretical distribution to a dataset can be 

very time-consuming. The EQM method instead utilizes the empirical cumulative 

distribution functions (ECDFs) for both observed and modelled variables. A transfer 

function matching the modelled ECDF in the control period with the observed ECDF was 

applied to adjust values from the climate projection quantile by quantile so that they yielded 

a better match with the observed (Fig. 3). The ECDFs were approximated using tables of 

empirical percentiles with fixed interval of 0.1 spanning the probability space [0, 1]. Spline 

interpolation was used for the values in between these percentiles and to extrapolate beyond 

the highest and lowest observed values. Twelve calendar-month-specific transfer functions 

for each grid cell were derived from 3-month windows centered on the calendar month of 

focus. This approach provided more robust transfer functions, which is important if they 

also will be used to adjust values in the projection period. The R package ‘qmap’ version 

1.0-2 (Gudmundsson, 2014) was applied to bias-correct and bias-adjust all the datasets.  

As the EQM method is applied to one variable and one location at a time and does not 

change the temporal structure of a climate model, the inter-variable, spatial and temporal 

dependencies are not corrected relative to the observations. It is important to bear in mind 

these drawbacks when interpreting the results of climate impact studies based on the bias-

corrected/bias-adjusted climate data. 

 

Figure 3. Synthetic example of bias-correcting modelled data using a transfer function derived 
from empirical cumulative distribution functions (ECDF) of observed and modelled variables. 

The red and green lines on the left denote the uncorrected time series and observed time series 

respectively. The blue line represents the bias-corrected time series. The red and green lines on 

the right indicate the ECDF of uncorrected data and observed data respectively.  

3.3 De-trending future climate projections 
The derived transfer functions from the control period were assumed to be valid for use in 

the projection period. However, to avoid the risk of removing/adjusting the possible long-

term trend of modelled precipitation and temperature during bias-adjustment, all 

precipitation and temperature data in the projection period were de-trended first. Hempel 

et al. (2013) proposed simple mean division (dividing by the mean value) and mean 

subtraction (subtracting the mean value) methods to de-trend the time series for daily 

precipitation and temperature, respectively. The daily variability about the monthly mean 

remained unchanged using these procedures. 
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3.3.1 De-trending precipitation 

The relative trend for precipitation for month i, 
i
P∆ , is defined as:  

 
ctrl

i

prj

i

i

P

P
P =∆

 
 

where 
prj

iP  and 
ctrl

iP  are mean monthly accumulated precipitation for month i for the 

projection and control periods, respectively. The de-trended (normalized) daily 

precipitation, prj

ij
P̂ , for month i and day number j in the projection period is: 

i

prj

ijprj

ij
P

P
P

∆
=ˆ  

where 
prj

ij
P denotes the original daily precipitation for month i and day number j in the 

projection period. 

EQM was applied only to the ‘normalized’ time series, and the trend for month i was then 

put back into the bias-adjusted normalized data for month i and day number j, 
prj

ij
P
(

, after 

the bias-adjustment procedure. The bias-adjusted precipitation for month i and day number 

j, prj

ij
P
~

, is: 

i

prj

ij

prj

ij
PPP ∆⋅=

(

~

 

3.3.2 De-trending temperature 

Similarly, the temperature trend for month i , 
i
T∆ , is defined as:  

 
 

where 
prj

iT  and 
ctrl

iT  refer to mean monthly temperature for month i for the projection and 

control periods, respectively. The de-trended (residual) daily temperature, prj

ij
T̂ , for month 

i and day number j in the projection period is: 

i

prj

ij

prj

ij
TTT ∆−=ˆ  

 
and 

prj

ij
T  represents the original daily temperature for month i and day number j in the 

projection period. 
 
The EQM method was then applied to the ‘residual’ time series. After bias-adjustment, the 
trend for month i was re-introduced to the bias-adjusted residual data for month i and day 

number j, 
prj

ij
T
(

. The bias-adjusted temperature for month i and day number j, prj

ij
T
~

, is: 

i

prj

ij

prj

ij
TTT ∆+=

(

~

 

ctrl

i

prj

ii TTT −=∆
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3.4 Quality control of the bias-adjusted data 
As the EQM method does not assume any theoretical distributions, and no upper or lower 
limits were set on the transfer functions, extrapolation beyond the maximum or minimum 
values of the transfer functions in the projection period using spline method can lead to 
unreasonably high or low values of precipitation and temperature. These artefacts or ‘hot-
spots’ had to be removed before the data were passed on to the hydrological model. As a 
result, all bias-adjusted data were subjected to a simple quality control to ensure that the 
bias-adjustment procedure did not alter the original climate change signal significantly. 
Empirical cumulative distribution functions (ECDFs) for original climate data and bias-
adjusted data were examined for both control and projection periods. Original climate 
change signals and the change signals based on the bias-adjusted data for specific 
percentiles were calculated and compared. The criteria listed below were used to determine 
whether over-adjustment had occurred and a new re-adjustment was necessary. 

3.4.1 Precipitation 

The original precipitation change signal (relative change) for percentile q,
original

q
RC , 

between the control and projection periods can be defined as:  

( )
ctrl

q

ctrl

q

prj

qoriginal

q
P

PP
RC

−

=  

where 
prj

q
P  and 

ctrl

q
P  are the original precipitation data equivalent to percentile q of ECDF 

of original dataset in the projection and control periods respectively.  

Similarly, the relative precipitation change of the bias-adjusted precipitation from the 
control to the projection period for the q percentile is:  

( )
ctrl

q

ctrl

q

prj

qadjust

q
P

PP
RC

~

~~

−

=  

where prj

q
P
~

 and ctrl

q
P
~

 denote the bias-adjusted precipitation in the projection and control 

periods.  

The absolute difference between 
adjust

q
RC  and 

original

q
RC  is given as: 

original

q

adjust

qq RCRCdiffP −=  

and if 
q

diffP  is larger than 0.05, a new re-adjustment is carried out. 
original

q
RC  simply 

replaces 
adjust

q
RC  in the calculation of a new estimate for precipitation adjustment prj

q
P
~̂

: 

ctrl

q

ctrl

q

original

q

prj

q PPRCP
~

)
~

(
~̂

+⋅=  
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3.4.2 Temperature 

For temperature, the absolute change was considered instead. The original temperature 

change signal for percentile q,
original

q
AC , between the control and projection periods is: 

ctrl

q

prj

q

original

q TTAC −=  

where 
prj

q
T  and 

ctrl

q
T  are equal to the q percentile of ECDF of the original temperature data 

in the projection and control periods respectively. The temperature change signal based on 

the bias-adjusted data is defined as: 

ctrl

q

prj

q

adjust

q TTAC
~~

−=  

where 
prj

q
T
~

 and 
ctrl

q
T
~

refer to the q percentile bias-adjusted temperature data in the 

projection and control periods.  

If 
q

diffT  is larger than 3, where original

q

adjust

qq
ACACdiffT −= , a new estimate for 

temperature, 
prj

q
T
~̂

, is given as: 

ctrl

q

original

q

prj

q TACT
~~̂

+=  

Figure 4 illustrates how the over-adjusted temperature data were modified so that a better 

match to the original temperature change signals was obtained.  

 

Figure 4. Synthetic example of the quality check procedure. The dashed and 
solid red lines represent the empirical cumulative distribution function 

(ECDF) of original modelled temperature for the control and projection 

periods respectively. Similarly, the dashed and solid blue lines denote the 

ECDF of bias-corrected temperature for control period and bias-adjusted 

temperature for projection period. The solid orange line indicates the re-

adjusted temperature for the projection period after the quality check 

procedure. 
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3.5 Results 

3.5.1 Precipitation 

The spread in the bias-adjusted and quality-controlled RCM projections are presented in 
median (50th percentile), low (10th percentile) and high (90th percentile) values. When 
comparing far future (2071-2100) and present (1971-2000) climates, the median annual 
precipitation change for Norway as a whole is approximately a 10% increase for RCP4.5 
and a 20% increase for RCP8.5 (Fig. 5). For RCP4.5, the 10th and 90th percentiles vary 
from practically no change to an increase of 16%. For RCP8.5, an increase between 10 to 
28% is projected.   

 

 

Figure 5. Percentage change in annual precipitation for Norway relative to the reference 
period (1971-2000). The blue and red lines show the median values for the ensemble of 10 RCM 

runs for RCP4.5 and RCP8.5. To remove short-term variability, both curves are smoothed using 

a 30-year Gaussian filter. Shaded areas surrounding the precipitation curves indicate the 

spread of the RCM results (10th and 90th percentiles). 
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Figure 6 illustrates the regional pattern of the median percentage changes in annual 
precipitation for RCP4.5, whereas Figure 7 shows the median changes for RCP8.5. The 
increases are considerably larger for RCP8.5 
 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 6. Median percentage change in annual precipitation based on 10 RCM runs for 

RCP4.5 between the reference period (1971-2000) and the projection periods a) 2031-2060 

and b) 2071-2100, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Median percentage change in annual precipitation based on 10 RCM runs for 

RCP8.5 between the reference period (1971-2000) and the projection periods a) 2031-2060 

and b) 2071-2100, respectively. 
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3.5.2 Temperature 

The median mean temperature increase for Norway by the end of the century is 
approximately 3 ̊C for RCP4.5 and 5 ̊C for RCP8.5 (Fig. 8). Most of the projections (10th 
and 90th percentiles) show an increase between 2.5 ̊C and 4 ̊C for RCP4.5 and 3.5 ̊C and 
6 ̊C for RCP8.5, respectively. 

The largest changes in annual mean temperature are expected in northern Norway for both 
emission scenarios and future periods (Fig. 9 and 10). For western Norway, the temperature 
increase is lower than for northern and eastern Norway for RCP8.5 (Fig. 10). Generally, 
the increases are significantly larger for RCP8.5.   

 

 

Figure 8. Change in annual mean temperature for Norway relative to the reference period 
(1971-2000). The blue and red lines show the median values for the ensemble of 10 RCM runs 

for RCP4.5 and RCP8.5. To remove short-term variability, both curves are smoothed using a 

30-year Gaussian filter. Shaded areas surrounding the temperature curves indicate the spread 

of the RCM results (10th and 90th percentiles).  
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Figure 9. Median change in annual mean temperature based on 10 RCM runs for RCP4.5 

between the reference period (1971-2000) and the projection periods a) 2031-2060 and b) 

2071-2100. 

 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 10. Median change in annual mean temperature based on 10 RCM runs for RCP8.5 

between the reference period (1971-2000) and the projection periods a) 2031-2060 and b) 

2071-2100. 
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4 Hydrological modelling 
A spatially distributed version of the HBV precipitation and runoff model was used to 
assess the hydrological responses to climate change (Beldring et al., 2003; Beldring, 2008). 
The model calculates the water balance for 1 x 1 km grid cells characterized by their 
elevation and land use. Each grid cell can be divided into two land use zones with different 
vegetation types, a lake area and a glacier area. The model was run using a daily time step, 
with precipitation and temperature data as input. It has components for accumulation, sub-
grid scale distribution and ablation of snow, interception storage, sub-grid scale distribution 
of soil moisture storage, evapotranspiration, groundwater storage and runoff response, lake 
evaporation and glacier mass balance. Potential evapotranspiration is a function of 
temperature and seasonally varying vegetation characteristics. Further description of model 
structure and algorithms can be found in Bergström (1995). 

Due to the absence of directly measured catchment characteristics, to natural variability 
and to the non-linearity of the processes involved, calibration is necessary to adjust the 
model parameters to improve the model’s ability to reproduce the observed hydrological 
data. A regional set of parameters for each land use class were determined using a multi-
criteria calibration approach, where the residuals between simulated and observed daily 
streamflow from 121 Norwegian catchments located in areas with different hydrological 
regimes and landscape characteristics were considered simultaneously. This calibration 
procedure rests on the hypothesis that model elements with identical landscape 
characteristics have similar hydrological behaviour and should, therefore, be assigned the 
same parameter values. The grid cells should represent the significant and systematic 
variations of land surface properties, and representative (typical) parameter values should 
be applied for different classes of soil and vegetation types, lakes and glaciers (Gottschalk 
et al., 2001). The period 1991-2000 was chosen as the calibration period. For model 
calibration daily precipitation and temperature grids at 1 x 1 km spatial resolution from the 
Norwegian Meteorological Institute (Tveito et al., 2005) were used.  

Model simulations produced gridded daily time series of soil moisture deficit, runoff, 
evapotranspiration, snow water equivalent and groundwater for each 1 x 1 km grid cell. 
The model was run continuously for the period 1970-2100, and the first year was 
considered a spin-up year such that the results were not included in the further analyses. 
Runoff and evapotranspiration are flux variables representing average values over each grid 
cell in mm/day. The other variables are state variables, which describe the average 
condition of the hydrological components in a grid cell with unit mm (or m3/1000 m2). 

4.1 Results 

Only example results are presented in this report. For more comprehensive results, see 
‘Klima i Norge 2100’.  

4.1.1 Runoff 

Figure 11 shows the percentage changes in annual runoff for Norway when compared to 
the reference period (1971-2000). Relatively small changes are projected for the next 50 
years based on the median values of the ten projections considered. Towards the end of the 
century, the median projection indicates a slight increase, 3% for RCP4.5 and 7% for 
RCP8.5. However, the spread in RCM results is rather large, as indicated by the 10th and 
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90th percentiles. This can be attributed to the differences in projected precipitation and 
temperature from the RCMs. 

 

Figure 11. Percentage change in annual runoff for Norway relative to the 
reference period (1971-2000). The blue and red lines show the median values for 

the ensemble of 10 RCM runs for RCP4.5 and RCP8.5. Shaded areas surrounding 

the runoff curves indicate the spread of the RCM results (10th and 90th 

percentiles). To remove short-term variability, all curves are smoothed using a 

30-year Gaussian filter.  

 
The projected relative changes in seasonal runoff are considerably larger than for annual 
runoff (Fig. 12), and this is caused by seasonal changes in precipitation and temperature 
characteristics. The largest relative increases are expected in the winter due to increased 
precipitation and to more precipitation in the form of rain, rather than snow, leading directly 
to runoff. Summer seasons are projected to have the largest relative decreases due to higher 
evapotranspiration losses and reduced runoff resulting from earlier snowmelt. Both 
emission scenarios show similar patterns, although changes in RCP8.5 are more 
pronounced.      

 
Figure 12. Relative percentage changes in seasonal and annual runoff for Norway from 1971-
2000 to a) 2031-2060 and b) 2071-2100 for RCP4.5 (blue) and RCP8.5 (red). Median 

projections are marked as a black solid line, while low (10th percentile) and high (90th 

percentile) projections are marked by the lower and upper ends of the boxes. 
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Regional differences in changes in annual runoff are shown in Figure 13. The median 
projection indicates a slight increase in runoff for both emission scenarios and future 
periods (2031-2060 and 2071-2100) in Østlandet, Vestlandet and Nordland regions. 
However, a slight decrease is projected for Trøndelag. For Sørlandet, Troms and Finnmark 
regions, only minor changes in annual runoff are expected.   

 

Figure 13. Relative percentage changes in annual runoff for different regions of Norway from 
1971-2000 to 2031-2060 (2045) and 2071-2100 (2085) for RCP4.5 (blue) and RCP8.5 (red). 

Median projections are marked as a black solid line, while low (10th percentile) and high (90th 

percentile) projections are marked by the lower and upper ends of the boxes. The map in the 

middle shows the annual runoff (1971-2000) and the red lines indicate the regional boundaries.  

 

Although precipitation and temperature are bias-corrected in the reference period, the 
runoff simulations averaged over the whole country using the corrected climate model 
inputs do not perfectly match the simulation results using observed (seNorge) inputs (Fig. 
14). The observation-based runoff simulations are often larger than the simulations with 
bias-corrected inputs in the summer months, whereas the opposite effect (i.e. observed 
values are lower than simulated) is seen in the spring months. For autumn and winter, no 
significant differences are evident. This can be an indication that the day-to-day variability 
is not sufficiently represented in the corrected datasets relative to the observed ‘true’ values. 
Another contributing factor can be the existence of temporal and spatial biases in the 
climate model inputs. The highly non-linear nature of the hydrological processes further 
enhances these differences.  
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Figure 14. Mean monthly runoff averaged over the whole country for the period 1971-2000. 

Runoff was simulated by the HBV model. The green line refers to runoff simulations using 

observed (seNorge) inputs. The blue dashed line represents the median runoff projection using 

the corrected RCM inputs. Shaded areas surrounding the median runoff curve indicate the 

spread of the runoff simulation results based on corrected RCM inputs (10th and 90th 

percentiles). 

4.1.2 Snow water equivalent 

The combined effect of increased precipitation and temperature on snow water equivalent 
is shown in Figure 15. For most of the country, there is a reduction in the maximum amount 
of snow by the end of this century. However, it is worth noting that in some high-lying 
areas, an increase is expected in the far future.  

Figure 16 shows changes in the expected number of days with a snow cover under a future 
climate. The snow season can be 1- 5 months shorter and 1- 7 months shorter for RCP4.5 
and RCP8.5, respectively. At low altitudes where the winter temperature today is only 
slightly below zero, the snow will be negligible in most years towards the end of the century 
under the high emission scenario. 

 

Figure 15. Changes in maximum annual snow water equivalent (SWE) in mm from 1971-2000 

to 2071-2100 for a) RCP4.5 and b) RCP8.5, both median projections.  
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Figure 16. Changes in the annual number of days with snow cover from 1971-2000 to 2071-
2100 for a) RCP4.5 and b) RCP8.5, both median projections. 

 

 

5 Discussion 
Since the bias-correction method corrects only one variable at a time, it can lead to a loss 
of physical consistency between the variables in the corrected datasets. Although applying 
bias-correction to precipitation conditioned on the bias-corrected temperature data can 
improve the precipitation-temperature dependency (e.g. Piani and Haerter, 2012), the 
substantially increased computational time may render this method infeasible for high-
resolution datasets containing long time series.   

The EQM method employed in this study gives a significant improvement in the simulated 
mean monthly temperature and accumulated precipitation. However, applying calendar-
month-specific transfer function can result in discontinuities in the data at the start of each 
month, though the use of 3-month moving windows to derive monthly transfer function 
can partly compensate for this issue. Moreover, the EQM method did not change the 
temporal order of the original climate model data and hence it was not able to correct any 
temporal biases that might exist in the climate model outputs, such as the length of dry and 
wet spells. Similar concern can be raised about the spatial structure because the EQM 
method was applied to each grid cell individually and basically reproduced the spatial 
structure of the climate model.  

The transfer functions derived from the control period were also used in the projection 
period for bias-adjustment. However, the underlying assumption that the relationship 
between model and observations remains unchanged between the control and the projection 
periods may not hold in a changing climate. It is also questionable whether or not the 
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stationarity assumption of the hydrological model parameters is fulfilled. A hydrological 
model is normally calibrated for a specific period. However, temporal variations in climate 
or human induced land-use changes such as deforestation, changes in vegetation type and 
urbanisation can have significant impacts on a hydrological system. Although it is possible 
to adjust the model parameters explicitly to account for changing catchment characteristics, 
this approach requires a priori knowledge of such changes, which makes it poorly suited 
for use with future projections. 

The temperature index method used in the hydrological model to estimate potential 
evapotranspiration probably overestimates evapotranspiration, and hence underestimates 
runoff because the future conditions are warmer than what the model has been calibrated 
for. An alternative method, which also takes into account factors that may influence the 
feedback between the land surface and the atmosphere such as wind, humidity and 
radiation, has recently been implemented in the hydrological model used here. Input data 
requirements have, however, so far limited the test of the new method and its use in our 
hydrological simulations.   

The results presented in this study assume that the areas covered by glacier are constant 
over the whole projection period. However, the projected temperature increase in the future 
can lead to a change in glacier mass balance and areal coverage, which will result in altered 
runoff patterns in catchments with significant contributions from glaciers. The effect of 
rising temperatures and its impact on glaciers and runoff is an ongoing research topic at 
NVE, and a new approach to simulate glacier dynamics may be included in future 
hydrological simulations. 

Generally, the uncertainty of the climate and hydrological projections increases with 
decreasing grid size. In particular, use of only a single grid cell value to represent a site of 
interest is not recommended. The eight surrounding neighbour cells should also be 
considered and an average value derived from these nine grid cells is a better representation 
of a ‘point value’. For assessing runoff or discharge from a catchment, grid cells covering 
the entire catchment area rather than the grid cell where the outlet of the catchment is 
located should be selected.   

Despite their limitations, these high-resolution datasets represent a valuable data source for 
different types of impact studies at a national and local scale. However, it is of uttermost 
importance to be aware of these limitations and their implications for climate change 
impact studies. Further research is recommended to develop further methods for providing 
climate projections which preserve climate signals at the finer spatial resolutions required 
for climate impact studies.   
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