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AbstractGridded meteorological data are available for all of Norway as time series dating from 1961. A newway of
interpolating precipitation in space from observed values is proposed. Based on the criteria that interpolated
precipitation fields in space should be consistent with observed spatial statistics, such as spatial mean, variance
and intermittency, spatial fields of precipitation are simulated from a gamma distribution with parameters deter-
mined from observed data, adjusted for intermittency. The simulated data are distributed in space, using the spatial
pattern derived from kriging. The proposed method is compared to indicator kriging and to the current methodology
used for producing gridded precipitation data. Cross-validation gave similar results for the three methods with
respect to RMSE, temporal mean and standard deviation, whereas a comparison on estimated spatial variance
showed that the new method has a near perfect agreement with observations. Indicator kriging underestimated the
spatial variance by 60–80% and the current method produced a significant scatter in its estimates.

Key words spatial rainfall; interpolation; spatial variance; intermittency; Norway

Simulation de champs de précipitation par interpolation cohérente en termes de variance
Résumé Des séries temporelles de données météorologiques maillées sont disponibles pour l’ensemble de la
Norvège depuis 1961. Une nouvelle façon d’interpoler les champs de précipitations dans l’espace à partir des
valeurs observées est proposée. Sur la base des critères selon lesquels les champs de précipitations interpolés dans
l’espace devraient être compatibles avec les statistiques spatiales observées comme les moyennes, variances et
intermittences spatiales, les champs de précipitations sont simulés selon une distribution gamma déterminée à partir
de données observées, ajustées pour l’intermittence. Les données simulées sont distribuées dans l’espace à l’aide du
patron spatial dérivé par krigeage. La méthode proposée est comparée à l’indicateur de krigeage et à la méthode
actuellement utilisée pour produire des données de précipitations maillées. La validation croisée a donné des
résultats similaires pour les trois méthodes, pour les valeurs de l’erreur quadratique moyenne, de la moyenne
temporelle et de l’écart type, tandis que la comparaison sur la variance spatiale a montré que la nouvelle méthode
donne un accord presque parfait avec les observations. L’indicateur de krigeage sous-estime la variance spatiale de
60-80% et la méthode actuelle produit une dispersion significative de ses estimations.

Mots clefs champs de précipitations; interpolation; variance spatiale; intermittence, Norvége

INTRODUCTION

Spatial interpolation of meteorological elements such
as precipitation and temperature is essential in opera-
tional hydrology. In Norway, the national flood fore-
casting service is based on simulations and forecasts
from 117 catchments, using the Swedish hydrological
model, the HBV model (Bergström, 1992). In order to
facilitate rapid inclusion of new catchments into the
forecasting system, it has been decided to use meteor-
ological grids of temperature and precipitation as input
to the hydrological models rather than weighted values
from nearby specific meteorological gauging stations.

The problem with using specific gauging stations
is that these stations have a varying life span depen-
dent on their representativeness, and the availability of
staff to carry out the observations. Once such a station
is no longer operational, the hydrological forecast
model has to be re-calibrated for a new set of gauging
stations. It is foreseen that maintenance of the flood
forecasting system would be much easier if meteoro-
logical grids were used. However, these grids have to
be interpolated on a daily basis according to available
gauging stations. The current precipitation grid
(see examples at www.senorge.no) is obtained by
a simple interpolation method, where a triangular
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irregular network (TIN) of precipitation is estab-
lished based on all points of observation. A grid of
resolution 1 � 1 km2 is constructed from the TIN. A
similar grid of station altitude is produced and this
altitude grid is compared to altitudes from a digital
terrain model (DTM); then the precipitation grid is
adjusted using a precipitation gradient of 10%/100 m
on the differences between the two altitude grids
(Jansson et al., 2007). The resulting precipitation
grid compared well with grids obtained by other
methods used in the Nordic countries (Jansson
et al., 2007). However, the method has the disadvan-
tage of not being able to extrapolate outside defined
triangles, and the spatial variability and correlation
are, for a large part, the result of topography rather
than derived from the rainfall process itself.

Most methods used for interpolating precipita-
tion, even sophisticated methods such as kriging
(Creutin & Obled, 1982; Teegavarapu, 2007), have
a tendency to produce too smooth fields, i.e. to under-
estimate the spatial variability (Creutin & Obled,
1982; Haberland, 2007). The loss of variability
will affect the estimation of extreme values and
undermine the main contribution of the distributed
hydrological model which is the optimal use of spa-
tially distributed moisture input. The relative impor-
tance of the spatial variability of rainfall in relation to
hydrological prediction is not entirely clear, and is
dependent on physical catchment characteristics,
catchment scale, precipitation type and scale, ante-
cedent moisture conditions and type of hydrological
model (lumped, distributed, physical, conceptual,
etc.; Segond et al., 2007). Most authors conclude,
however, that for semi-distributed and distributed
models, improvements in predictions and hydro-
logical insights are gained by taking into account
the spatial variability of rainfall (Singh, 1997;
Tetzlaff & Uhlenbrook, 2005; Pechlivanidis et al.,
2008). Chaubey et al. (1999) point out that a large
uncertainty in estimated parameters of the hydro-
logical model can be expected if spatial variability
of precipitation is ignored.

Ideally, we would like an interpolated rainfall
field to have the same spatial statistical features
as the observed spatial fields. The spatial statistical
features that are the focus of this study are spatial
mean, spatial variability and realistic fractions of
dry area. The path followed in this study is to simulate
precipitation values according to a two-parameter
gamma distribution. The parameters are estimated
from within-storm spatial mean and variance. By the

term “within-storm”, we mean the part of the area in
question in which positive values of precipitation are
observed (see Seo, 1998). The within-storm spatial
mean and variance are derived from the observed
moments, but with estimated intermittency taken into
account. Simulated precipitation values typically
span outside the interval determined by the smallest
and largest observed values (apart from observed
zeros) and we try here to devise rules to correctly
place the maximum simulated precipitation value
in space. We further hypothesize that this added
information will result in more precise interpolated
fields. Furthermore, we use the spatial distribution of
a kriged field (using spatially mapped ranks of pre-
cipitation values) as a map of where to distribute the
simulated values. The new method for simulating/
interpolating precipitation fields is hereafter named
SPF, an abbreviation for its product, simulated pre-
cipitation fields.

Over a catchment, precipitation is often fractional,
and procedures for the interpolation of precipitation
thus have to take into account within-storm variability
and the variability due to intermittency (Seo, 1998).
Here, the intermittency is estimated through the rela-
tionship between observed spatial mean and variance
and derived within-storm spatial mean and variance.
The proposed method for determining intermittency is
compared to that of indicator kriging (Barancourt
et al., 1992) and to the method of deriving intermit-
tency from weather radar. Indicator kriging is also the
method to which SPF is compared through cross-
validation analysis.

In the next section, we present the theory applied
for estimating intermittency and thus the within-storm
parameters in the gamma distribution. The methods
derived for mapping the simulated precipitation values
are also described in this section. The next section
presents the results of the cross-validation and a
discussion follows in the last section.

METHOD

The methods developed in this paper are described
below: first the statistical model, the gamma distribu-
tion, used for simulating precipitation is presented;
then, we introduce an algorithm for estimating inter-
mittency from observed spatial mean and variance.
Next we develop a method for determining a possible
location for the highest simulated value, and, finally,
the method for distributing the simulated precipitation
in space is presented.
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Statistical model

Let us introduce a statistical model for the spatial dis-
tribution of within-storm positive precipitation, z0(x),
(z0(x) > 0). Precipitation z0(x) is measured during
a fixed time interval (in this case daily) across space, x.
In order to further simplify the notation, we omit x, so
positive rainfall across space is hereafter denoted z0.
The distribution in space of the within-storm (positive)
rainfall is assumed to follow a gamma marginal
distribution.

fa;�ðz0Þ ¼ 1

�ð�Þ a
�z0��1e�az0

a; �; z0 > 0
(1)

where � and a are the shape and scale parameters,
respectively. The mean is E(z0) ¼ �/a and the variance
var(z0) ¼ �/a2. The parameters are estimated from the
observed spatial mean and variance as:

a ¼ Êðz0Þ
v̂arðz0Þ

� ¼ Êðz0Þ2
v̂arðz0Þ

(2)

where the hats denote the estimate of the expected
value.

The gamma distribution is a common choice of
distribution for precipitation in space due to its flex-
ibility in shape (Robinson & Sivapalan, 1997; Kuzuha
et al., 2006), whichmay range from very skewed to the
left or approaching that of the normal distribution.

When spatial precipitation is studied over a fixed
area, we find two possible outcomes of the spatial
pattern: (a) the area might be fully covered with pre-
cipitation; and (b) we have an intermittent field, where
only a fraction of the area is covered by precipitation.
For both cases, the spatial distribution of precipitation
can be described by a two-parameter gamma distribu-
tion as suggested above.

Estimating the intermittency of a precipitation
field

In the case of full coverage of precipitation over the
area of interest, fitting the gamma distribution to the
observed spatial mean and variance is straightforward,
and equation (2) is used to estimate the parameters. In
the case of intermittency, we are faced with the

problem of having to determine the fraction of wet
area p, within a fixed domain in order to decide on the
parameters of two-parameter gamma distribution for
the within-storm precipitation. Let z and z0 denote
precipitation distributed in space including and not
including zeros, respectively. We refer to the within-
storm precipitation, z0, as conditional precipitation
(conditioned on positive precipitation) and to z, as
non-conditional precipitation. In order to determine
the fraction of wet area, p, we have to express p as a
function of conditional and non-conditional moments.
Furthermore, if we make an assumption on the func-
tional relationship between the non-conditional spatial
mean and variance, we have enough information to
determine the fraction of wet area p and the parameters
of the within-storm distribution of precipitation.

If we grid a fixed area into n elements, and m
of these elements are wet, the first-order moments
of non-conditional and conditional precipitation are,
respectively:

EðzÞ ¼ n� m

n
0þ m

n
Eðz0Þ

¼ pEðz0Þ
(3)

Eðz0Þ ¼ EðzÞ
p

(4)

where p ¼ m/n is the fraction of the area with positive
precipitation. Similarly, for the second-order moments:

Eðz2Þ ¼ n� m

n
0þ m

n
Eðz02Þ

¼ pEðz02Þ
(5)

Eðz02Þ ¼ Eðz2Þ
p

(6)

From equation (6), one can write the conditional
variance, var(z0), as

varðz0Þ ¼ Eðz02Þ � Eðz0Þ2

¼ Eðz2Þ
p

� Eðz0Þ2
(7)

and since E(z2) ¼ var(z) + E(z)2 equation (7) can be
written as:

varðz0Þ ¼ varðzÞ þ EðzÞ2
p

� Eðz0Þ2 (8)
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which gives:

p ¼ varðzÞ þ EðzÞ2
varðz0Þ þ Eðz0Þ2 (9)

From equation (3), we also have:

p ¼ EðzÞ
Eðz0Þ (10)

which, together with equation (9), give:

varðzÞ þ EðzÞ2
EðzÞ ¼ varðz0Þ þ Eðz0Þ2

Eðz0Þ (11)

From observed values we can determine the non-
conditional mean and variance, ÊðzÞand v̂arðzÞ, and
the right-hand side of equation (11) is quantified. In
order to proceed further and quantify the fraction of
wet area, p, and the conditional mean and variance,
E(z0) and var(z0), we introduce an assumption regard-
ing the regularity of the relationship between E(z0)
and var(z0). If we assume a one-to-one functional
relationship between E(z0) and var(z0), equation (11)
becomes an equation with only one unknown. With
estimated values of E(z0) and var(z0), the fraction of
wet area, p, can be determined from equation (10). In
support of an assumption of a one-to-one relationship
between E(z0) and var(z0), we have found reports in
the literature on very high correlation between spatial
mean and spatial standard deviation (Creutin & Obled,
1982; Barancourt et al., 1992; Skaugen, 2007), which
we can use to determine the right-hand side of equa-
tion (11). In assessing this relationship, we have to
consider events, over a fixed area, for which zeros
are observed, but where spatial mean and variance
are estimated from non-zero observations. This will
ensure that the observed spatial distribution is not
bounded to the left by positive values. Of course, the
data available for this assessment are limited, as there
are not so many events (especially events with heavy
precipitation) for which there are also stations within
the same area that measure zero precipitation. Figure 1
shows an assessment of the fixed relationship between
standard deviation and mean for conditional precipita-
tion of the Rissa area in central Norway.

If var(z0), or rather the standard deviation, s(z0), is
considered as a function of E(z0), the left-hand side of
equation (11) can be compared, for different values of
E(z0), with the right-hand side of equation (11), and the

wet fraction can be estimated through equation (10),
when a match is found.

It should be noted here that the reason for estimat-
ing the intermittency through the proposed method
instead of using the fraction of observation points that
measure zero precipitation is that the number of pre-
cipitation gauges in the area of interest is often too small
to give us a reliable estimate of the fraction of wet area.

Location of the highest simulated value in space

This section describes the non-trivial task of placing
the highest simulated precipitation value in space.
When interpolating using kriging, the highest value
in the kriged field is equal to, or very similar, to the
highest observed. However, the highest simulated
value is almost always higher than the highest
observed, and we need to place this value at a location
which is consistent with the pattern of the observed
values. This is necessary for the procedure described
in the next sub-section, which concerns the distribu-
tion in space of all the simulated values, and in which
the highest simulated value is treated as an observa-
tion. In order to avoid confusion, we wish to make it
clear that kriging interpolation is carried out twice in
SPF. First we use the kriged field to place the highest
simulated value in space, according to the procedure
described herein. Second, we apply kriging again,
using the highest simulated value as an observation,
and use the kriged field when distributing all the
simulated values in space. The latter procedure is
described in the next subsection.

It is difficult to devise clear rules as to where a
precipitation maximum should be located. An intuitive
thought is to associate maximum precipitation with
topography, i.e. placing the maximum value at the
highest peak close to the highest observed values.
Such a procedure was abandoned based on reported
low correlation between precipitation and altitude in

Fig. 1 Fixed relationship between spatial standard deviation
and mean (conditional values) for the Rissa area. The fixed
relationship is modelled as s ¼ amh, where s and m are
estimated standard deviation and mean respectively and
a (1.012) and h (0.83) are parameters.
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Norway. Two Norwegian studies conclude that the
altitude explains very little of the variability for daily,
monthly and annual precipitation, and negative trends
are often found (Førland, 1979; Steinsland et al.,
2007). Furthermore, when such a procedure was tested
using cross-validation, we found that for some loca-
tions estimation was improved compared to kriging,
whereas for other locations this was not the case.
Interestingly enough, placing the highest precipitation
value at the lowest local location was found to be just
as good. The adopted procedure is a result of a trial-
and-error process, in which several schemes were
tested and evaluated; it can be described as follows:
the optimum location of the highest simulated value is
the location where the spatial correlation structure in
terms of a semivariogram is best defined. For precipi-
tation stations rather close to each other, we expect a
close-to-linear slope in a well-defined empirical semi-
variogram (see Cole & Moore, 2008). The winning
location is thus selected as the point for which the
deviations from a linear slope of the empirical semi-
variogram are the smallest. In practice, the highest
simulated value is placed in different locations and
the empirical semivariogram is calculated for each
new location. The location which gives the smallest
deviations from the linear slope of the empirical semi-
variogram is defined as the optimum location of the
highest simulated value. However, it can be quite time-
consuming to test every possible location within an
area of interest, so the area for testing locations is
restricted in the following way. The precipitation
field is interpolated by ordinary kriging from the
observed values and ranked. It is reasonable to assume
that the highest simulated value should be located in a
general area where we find the highest kriged values.
The size of the area, in which we assume the highest
simulated value is located, is restricted to the number
of simulated values that are higher than the highest
observed value. Note that each value represents the
average value within a grid cell so that a collection of
values also represents an area. This procedure defines
an area which is large when the difference is large
between the highest simulated and observed value
(i.e. we have a field with high spatial variability), and
small when the difference is small.

The procedure described above gave the best
result when evaluated using cross-validation. Other
schemes, based, for example, on precipitation gradi-
ents and correlation distances, were inferior to the
chosen method, but the problem should remain open
for further study.

Distribution of simulated precipitation in space

As already stated, the main objective of this study is to
produce daily precipitation fields which respect the
observed spatial mean, variance and intermittency. In
order to achieve this we choose to simulate values
from a gamma distribution with parameters estimated
so that simulated spatial mean and variance are the
same as the observed values. The following descrip-
tion deals with the method of distributing the simu-
lated values in space with the aid of the kriging
interpolation method.

In distributing the simulated values in space, we
use the same line of reasoning as in Skaugen (2002). A
precipitation field is interpolated from the observed
values using ordinary kriging. Here, the highest simu-
lated value is included as one of those observed
through the procedure described in the previous sub
section. The vector of kriged values is ranked and the
spatial location is determined from the location in the
vector (i.e. the first value corresponds to the lower left
value in the grid). So to each spatial location, there is
assigned a rank, denoting the relative precipitation
value (the highest, the second highest, etc.). The vector
of simulated values is sorted and each simulated value
is placed at the location where its place in the simu-
lated vector (after ordering) and rank from the kriged
field are equal. In mathematical terms this procedure
can be described as follows (see also Skaugen, 2002):
let V be a vector of ordered simulated values, drawn
from a gamma distribution and sorted into ascending
order. Let Y be the vector of kriged values. Then if
rankY is a vector of the ranks of the kriged values Y,
the resulting precipitation field Z, can be expressed as:

Z½i� ¼ V ½rankY½i�� for all i ¼ 1; . . . ; I (12)

where the brackets [ ] indicate the components of
the vector and also the spatial location. The result is
thus a field with gamma distributed values of non-zero
precipitation, and with spatial dependencies inherited
from the interpolated field Y.

Figure 2 shows a simplified flow chart of the steps
and procedures necessary for producing simulated
precipitation fields.

RESULTS

In this section we will first evaluate the algorithm for
estimating the intermittency. Finding a sufficiently
dense network of precipitation gauges in Norway to
estimate the intermittency is difficult. A possible way
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is to use observations from weather radar. The Rissa
radar in central Norway (near Trondheim) provided
precipitation observations (derived by the Norwegian
Meteorological Institute) on a 1 � 1 km2 grid for the

Øyungen catchment (238 km2, with elevations
103–680 m a.s.l.). Figure 3 shows the location of the
radar and some nearby catchments.

The Øyungen catchment is located quite near the
radar and the radar is considered to provide good
precipitation estimates. Through the observed non-
conditional spatial mean and variance of precipitation
(derived by the radar) and the fixed relations between
conditional moments (see Fig. 1), we can estimate
the intermittency. Figure 4 shows how the estimated
intermittency compares with intermittency observed
by the radar. The agreement is good, especially for
precipitation events of small spatial extent.

Cross-validation comparison between SPF
and indicator kriging (IK)

In order to evaluate SPF, cross-validation was per-
formed for two areas in Norway: Oslo (interpolating
over a grid of 60 � 60 km2) and Trondheim (inter-
polating over a grid of 70� 70 km2). Cross-validation
is a procedure in which values of one of the observed
stations are removed when interpolating. The values
of this particular station are then estimated by the
interpolation method and compared to what is
observed. Cross-validation was carried out for nine
stations in the Oslo area (ranging in altitude from
53–514 m a.s.l.) and 10 stations in the Trondheim
area (11–158 m a.s.l.) using a time series of length

  Determine the intermittency p
  and the conditional moments   

   E(z) and var(z),  from

   observations

Simulate precipitation 

from the gamma 

distribution with parameters 

obtained using eq. (2) 

Determine a possible location 

in space for the highest 

simulated value 

Distribute the simulated 

values in space by using the 

ranks of the kriged field 

Fig. 2 Simplified flow chart of SPF procedures.

Fig. 3 Location of weather radar and the Øyungen catchment in central Norway.
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one year. We wanted to compare the time series
obtained by SPF and by indicator kriging (IK) with
the observed time series in order to evaluate the
relative performance of SPF compared to IK. Kriging
is a very commonly-used interpolation method
(Teegavarapu, 2007) and is also considered to be
among the best interpolation methods for precipitation
(Creutin & Obled, 1982; Lebel, 1987). In indicator
kriging, the probability of precipitation is mapped
spatially. If precipitation is observed, then the station
in question is assigned the value one, and zero if not. A
probability field is then interpolated. If a pixel in space
has the probability of more than 0.5 for precipitation,
the value obtained from ordinary kriging is used and a
value of zero precipitation is assigned if the probability
of precipitation is below 0.5. Ordinary kriging was
carried out using an exponential semivariogram model
with sill equal to the observed spatial variance and with
a nugget effect equal to 5% of the sill. The results of the
cross-validation for SPF and IK are shown in Fig. 5. The
measures used for evaluation are: mean absolute error
(MAE), the root mean square error (RMSE), absolute
fractional deviation AFD, (AFD ¼ |1 – (sim/obs)|,
where sim is the simulated value and obs the observed
value) of temporal mean (AFDm), standard deviation
(AFDstd), and number of dry days (AFDzero).

In general, the performance of the two methods
appears to be very similar. The IKmethod is somewhat
better for the Oslo area, and the two methods perform
very similarly for the Trondheim area. Note that the
amount of precipitation is generally much higher for
the Trondheim area with a daily mean for this year of
about 3–4 mm whereas for the Oslo area the daily
mean was less than 2 mm.

Extreme values

In order to investigate the ability of SPF and IK to
estimate extreme values, the two highest observed

values during the year of observation were compared
to those estimated. Figure 6 shows the MAE and
RMSE for the extreme values. The extreme values
for the Trondheim area were best estimated by SPF,
whereas the two methods have the same performance
for the Oslo area. We also compared the sample
quantiles obtained for the cross-validation series of
SPF and IK for the probabilities 0.8, 0.82, up to 1.00
against the sample quantiles of the observed precipita-
tion. A mean AFD of the quantiles, averaged over the
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Fig. 4 Estimated vs observed intermittence (329 events,
radar data for Øyungen), where p is the fraction of wet area.
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Fig. 5 Assessing the performance of SPF and IK against
observed values for (a) the Oslo area; and (b) the Trondheim
area. The best method evaluated by the different measures is
the one with the shortest bar.
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Fig. 6 Assessing the performance of SPF and IK for
extreme values at Oslo (bars to the left) and Trondheim
(bars to the right). The best method evaluated by the
different measures is the one with the shortest bar.
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different probabilities was computed for each station
and this value was averaged for all the stations within
the areas Oslo and Trondheim. The SPF performed
marginally better for the Oslo area with a mean AFD
over the quantiles and over the stations with 0.14 (SPF)
against 0.15 (IK), and clearly better for the Trondheim
area with 0.19 (SPF) against 0.23 (IK).

Comparison of SPF and the current interpolation
method

The SPF method was also compared to the current
interpolation method for precipitation, used in
www.senorge.no (denoted SeNorge). The method is
briefly described in the introduction. Figure 7 shows
the results of comparing SPF and SeNorge derived
values against independent observations of precipita-
tion for the month of August 2001. The independent
precipitation values are independent in the sense that
they were not used in estimating the SPF or SeNorge
precipitation fields.

We observe that SPF is just slightly better than
the current interpolation method. As, in the case of the
cross validation exercises, SPF compares well with
the mean and standard deviation of the observed time
series, whereas for the absolute and squared deviations
(MAE and RMSE), no improvements of SPF com-
pared to the other methods are found.

Comparison of spatial fields

We also compare the spatial statistics of the estimates
of SPF, IK and SeNorge. The estimated spatial means
and variances were compared to those observed from
the network of precipitation gauges for the two areas.
The results are shown in Figs 8 and 9.

The comparison shows that, whereas the esti-
mates of the spatial mean are indistinguishable for
IK and SPF, SeNorge appears to have a very small
negative bias for the Oslo area and a clear positive bias
for the Trondheim area. In regard to the estimation of
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spatial variance, the most striking result is the severe
underestimation of spatial variance by IK. The kriged
fields reproduce 40% of the observed spatial variabil-
ity for the Oslo area and only 20% for the Trondheim
area. The SPF method naturally estimates the spatial
variance very well, as the simulations are performed
with a specified variance equal to that of the observed
precipitation values, whereas SeNorge exhibits an over-
estimation for the Oslo area and a slight underestima-
tion for the events of low intensity for the Trondheim
area. A considerably larger scatter is observed for
SeNorge compared to SPF.

The estimates of the fraction of wet area (p) also
deserve a comment. Figure 10 shows the estimate of
the fraction of zero precipitation by SPF and IK com-
pared to the observed fraction of zeros (estimated as
the proportion of stations that actually observed zero
precipitation). Estimates of the fraction of wet area
were not carried out for SeNorge. The estimate of
p by SPF is scattered around the line representing a
perfect match between modelled and observed values.
For both the areas, the estimates of p by IK tend to
underestimate coverage for events where less than half
of the area is covered by precipitation and overesti-
mate coverage for events where more than half of the
area is covered by precipitation.

DISCUSSION

The increased use of spatially-distributed hydrological
models also increases the demand on the quality of
the interpolated meteorological fields used as input.
If the interpolation method applied to the observed
values produces too smooth a field, it undermines the
very idea of distributed models and the motivation
for using them. In principle, the more the spatial varia-
bility of the input is underestimated, the more the
distributed models will tend to provide the same infor-
mation as lumped models with spatial means as input.
One could argue that the degree of distribution in
space of the hydrological model should be carefully
matched by the detail of the spatial distribution of
the meteorological input. If the spatial variability
of precipitation is systematically underestimated,
one cannot expect to properly calibrate or model the
different (nonlinear) hydrological response mechan-
isms. An informative data set is one which contains
enough variability in watershed behaviour that the
different modes of operation of the hydrological pro-
cesses are properly represented (Sorooshian, 1995,
p. 49). Also, when predicting hydrological response,
it is better to have extreme precipitation estimated
for the wrong location than not estimated at all.
The latter will be the case if spatial variability is
underestimated.

It is clear from Figs 7 and 8(b) that SPF is better at
reproducing the observed spatial variability and that
this feature is seriously underestimated by IK. The fact
that the spatial variability of SPF is generally higher
than IK could have had a negative impact on the
precision in point estimation of SPF. The generally
higher spatial variability of SPF clearly gives a higher
potential for errors than IK with its very conservative
estimate, since SPF provides a larger range of variation
around the spatial mean than IK. The SPF method is
thus more dependent on a good procedure for placing
the estimated values correctly in space, since, due to
this method’s higher spatial variability, there is a
greater risk of large deviations from the true precipita-
tion values. It is surprising that the quite significant
difference in estimate of spatial variance is not, some-
how, reflected in the cross-validation results. Although
RMSE and MAE for the Oslo area are slightly better
for IK, the results for the other error measures, and for
the Trondheim area, are very similar. One possible
explanation may be that the data records of precipita-
tion (one year) are not sufficient to resolve the,
perhaps, subtle differences.
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The cross-validation results for the extreme
values show that the two methods perform similarly
for the Oslo area and that SPF is somewhat better for
the Trondheim area. The analysis contains few data
but the comparison of extreme values is more in favour
of SPF than when assessing the one-year data sample.
Perhaps one can see here the effect of a more realistic
estimate of spatial variance of SPF, in that one would
expect significant errors in the estimates of extreme
values if the spatial variance were underestimated.
Analysis of longer time series is needed for further
assessments to be made.

The derived algorithm for estimating the dry areas
appears to work well. The agreement with the Rissa
weather radar of the Trondheim area is very good. The
differences between the estimates of intermittency by
IK and SPF methods are indistinguishable when
assessed for the cross-validation, and the systematic
errors of under-/over-estimation to that of IK only
appears when assessing the spatial data.

It can be argued that in order to employ SPF and
kriging, an assumption of second-order stationarity in
space (see Delhomme, 1978) has to be made. Whether
SPF is subject to such constraints is not entirely clear
in that the shape of the spatial distribution is allowed
to vary for each event. In addition, the spatial distribu-
tion will, for some events, have a frequency of zeros.
Stationarity of the second order for the precipitation
fields from SPF is therefore not obvious and perhaps
not even desired. The ability to produce non-stationary
sequences is considered as a positive feature in rainfall
modelling, and the application of generalized linear
models on rainfall modelling problems has this feature
(Chandler & Wheater, 2002). Nevertheless, imple-
mented operationally, SPF will be employed for
limited areas of 70 � 70 km2, in an attempt to ensure
some degree of spatial stationarity.

The semivariogram used in the kriging proce-
dure defines the spatial structure (i.e. spatial auto-
correlation) of the precipitation fields obtained by
SPF. The type of the semivariogram is fixed as expo-
nential and the sill is estimated, for each event, from
the observed spatial variance. By using a fixed-type
semivariogram, the spatial structure of the fields from
SPF is unrealistic and probably too smooth. The spa-
tial auto-correlation structure of precipitation fields is
probably not well described for shorter time scales
by the sort of climatological variograms (Lebel
et al., 1987) employed in this study, and ideally, the
spatial structure of each event should be determined.
However, an analytical representation of the observed

spatial structure is often difficult to determine and if
SPF is used operationally, nationwide, the number of
stations will often be too few for a meaningful estimate
of spatial structure.

The SPF method is not an exact interpolator,
which means that the interpolated precipitation field
does not go through the observations. In contrast,
kriging with zero nugget effect and inverse distance
interpolation both do have this feature. The practical
implication of SPF not being an exact interpolator is
primarily that the observation points are not as well
estimated as would be the case using kriging. The
results of cross-validation, however, indicate that all
the other points in the area of interest are estimated with
a quality comparable to IK. As the number of observa-
tion points comprises a very tiny fraction of the area
to be interpolated, the hydrological impact of SPF not
being an exact interpolator is believed to be modest.

It is reasonable to assume that since the spatial
variability is better estimated by SPF, the spatial
distribution of precipitation obtained by SPF should
be closer to reality than that of IK. In principle, there is
thus a potential for SPF to provide better precipitation
fields, and this serves as an inspiration to deriving
better ways of distributing the simulated values in
space than the method employed in this study. This
line of enquiry will be followed in future work.
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