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A B S T R A C T

Streamflow data is important for studies of water resources and flood management, but an inherent problem is
that many catchments of interest are ungauged. The lack of data is particularly the case for small catchments,
where flow data with high temporal resolution is needed. This paper presents an analysis of regionalizing
parameters of the Distance Distribution Dynamics (DDD) rainfall-runoff model for predicting hourly flows at
small-ungauged rural catchments. The performance of the model with hourly time resolution has been evaluated
(calibrated and validated) for 41 small gauged catchments in Norway (areas from 1 km2–50 km2). The model
parameters needing regionalization have been regionalized using three different methods: multiple regression,
physical similarity (single-donor and pooling-group based methods), and a combination of the two methods.
Seven independent catchments, which are not used in the evaluation, are used for validation of the re-
gionalization methods. All the three methods (the multiple regression, pooling-group, and combined methods)
perform satisfactorily (0.5 ≤ KGE < 0.75). The combined method (which combines multiple regression and
pooling-group) performed slightly better than the other methods. Some model parameters, namely those de-
scribing recession characteristics, estimated by the regionalization methods, appear to be a better choice than
those estimated locally from short period of hydro-meteorological data for some test catchments. The single-
donor method did not perform satisfactorily. The satisfactory performance of the combined method shows that
regionalization of DDD model parameters is possible by combining multiple regression and physical similarity
methods.

1. Introduction

Streamflow is important information for water resources manage-
ment applications such as flood risk management, water resources
planning, and environmental impact assessment (Parajka et al., 2013;
Westerberg et al., 2014). However, most of the catchments that we are
interested in are ungauged which makes a method to predict flow in
ungauged catchments an important prerequisite (Bloschl et al., 2013;
Parajka et al., 2013; Tegegne and Kim, 2018). Reliable estimation of
continuous streamflow in ungauged catchments has remained a fun-
damental challenge in hydrology, although significant insights have
been gained in recent years (Steinschneider et al., 2014; Wagener and
Wheater, 2006; Wagener et al., 2004). To solve the challenges posed by
ungauged catchments, a number of predictive tools have been devel-
oped and tested [e.g. data driven models, such as multiple linear re-
gression (MLR), autoregressive moving average (ARMA), and artificial

neural networks (ANNs); lumped models (e.g., Hydrologiska Byråns for
Vattenbalansavdelning model (HBV)); distributed models (e.g., MIKE-
SHE) and statistical regionalization] that allow objective and quanti-
tative decision-making with respect to water resources management,
but considerable uncertainties remain (Sivapalan et al., 2003). The
International Prediction in Ungauged Basins (PUB) initiative re-
commends the use of an appropriate model structure for predicting flow
in ungauged catchments (Blöschl et al., 2013), and the choice of ap-
propriate model structure helps in reducing predictive uncertainty (Son
and Sivapalan, 2007). Flash floods are usually localized disasters that
occur in small catchments with response times of a few hours or even
less (Borga et al., 2007). The short lead time and small area collectively
enhance the difficulty of flood management in such catchments (Miao
et al., 2016). In addition, small catchments and short time scales are the
most under-observed and problematic in terms of prediction and de-
sign, and should be identified as a priority in water resource and flood
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management (Spence et al., 2013).
Water resource management problems are increasingly approached

using continuous time rainfall-runoff modelling (Lamb and Kay, 2004;
Swain and Patra, 2017), rather than the traditional statistical or event-
based models. Simple concept models such as the rational formula and
its more sophisticated derivatives are criticized for containing para-
meters which are difficult to estimate (e.g. the runoff coefficient) or for
being founded upon questionable assumptions (e.g. identical return
period for precipitation and resulting peak flow) (Viviroli et al., 2009).
The advantage of continuous simulation approaches is that the catch-
ment moisture state prior to the flow-producing rainfall event is im-
plicitly incorporated within the modeling framework provided that the
model produces reasonable simulations (Pathiraja et al., 2012). Fur-
thermore, getting the right answers for the right reasons is crucial for
getting the right answers at all, if conditions shift beyond the range of
prior experience (due to extreme precipitation events, climate change,
or shifts in land use) (Kirchner, 2006).

Catchment size has an effect in hydrological modelling, and hy-
drological responses of small catchments are likely to be different from
and more variable than those of large catchments (Pilgrim et al., 1982).
Small catchments need to be modelled using shorter time steps (Blöschl
and Sivapalan, 1995; Bronstert, 2003; Vormoor and Skaugen, 2013;
Wetterhall et al., 2011). Until the 1990s, hydrologists had to rely mostly
on data with a daily time step, e.g. accumulated rainfall amounts re-
corded once a day by observers, and this caused limitations to the ap-
plicability of rainfall–runoff models for problems (e.g. flooding)
needing short time steps (Blöschl and Sivapalan, 1995; Creutin and
Obled, 1980). However, over the last two decades, the availability of
hourly and even sub-hourly data is increasing in many countries,
especially with the implementation of automatic rain gauge networks
and rainfall radars (Berne and Krajewski, 2013; Creutin and Borga,
2003).

A rainfall-runoff model is one of the tools used to predict flows in
ungauged catchments (Nruthya and Srinivas, 2015). This method re-
quires estimation of the model parameters using regionalization (Zhang
et al., 2014). There are different types of rainfall-runoff hydrological
models and regionalization methods. One method may work well for
one type of model and another method may work well for another
model in different regions (Razavi and Coulibaly, 2013) because each
model has its own unique characteristics and respective applications
(Devi et al., 2015). Conceptual rainfall-runoff models, such as HBV and
Identification of Unit Hydrographs and Component Flows from Rainfall,
Evaporation and Stream Data (IHACRES) have emerged as the most
frequently used models for estimating continuous stream flow at un-
gauged catchments (Razavi and Coulibaly, 2013). The three commonly
used regionalization methods are regression, physical similarity and
spatial proximity (Bao et al., 2012; Bárdossy, 2007; Merz and Blöschl,
2004; Oudin et al., 2008; Parajka et al., 2005). Some hydrologists have
tried to compare and evaluate the methods, but the results are not
consistent (Kay et al., 2006; McIntyre et al., 2005; Oudin et al., 2008;
Young, 2006; Zhang and Chiew, 2009). Young (2006) regionalized the
Probability Distributed Model (PDM) in 260 catchments in the UK and
found that the regression method was more accurate than the spatial
proximity method. Skaugen et al. (2015) regionalized the Distance
Distribution Dynamics (DDD) model in 84 catchments ranging from
small to large sizes in Norway using daily data and found that multiple
regression equations performed well in predicting flows at ungauged
catchments. Kay et al. (2006) tried to compare the performance of re-
gression and physical similarity methods with two models [PDM and
Time–Area Topographic Extension (TATE)] for 119 catchments across
the UK but did not obtain consistent results. For the PDM, physical si-
milarity was more accurate, but regression outperformed physical si-
milarity for TATE. Merz and Blöschl (2004) found that the multiple
regression method of regionalization at 308 catchments in Austria,
using HBV model involving 11 calibration parameters, gave sig-
nificantly poorer results than the spatial proximity method. Oudin et al.

(2008) used two lumped rainfall-runoff models with daily data on 913
French catchments and found that when a dense network of gauging
stations is available, the spatial proximity method provides the best
regionalization solution, while the regression method shows the least
satisfactory results, and the physical similarity method is in between
the two others in accuracy. Magette et al. (1976) used 21 catchments in
USA in the regionalization of six selected parameters of the Kentucky
Watershed Model (KWM) using hourly data and found that a multiple
regression method was successful in estimating model parameters from
catchment descriptors, but a simple linear regression model was un-
successful. Kokkonen et al. (2003) used 13 catchments in North Car-
olina, USA, in the regionalization of six parameters of IHACRES model
with daily data and found that the arithmetic mean method of re-
gionalization gave poorer results than regression and similar hydrologic
behavior methods.

The major goal of the international PUB initiative was to reduce the
uncertainty in the prediction of runoff by shifting away from tools that
require calibration and curve fitting to tools that need little or no ca-
libration (parsimonious models) (Spence et al., 2013). The PUB synth-
esis book states that the starting point for predicting the runoff hy-
drograph in ungauged catchments using rainfall–runoff models is the
choice of an appropriate model structure (Blöschl et al., 2013).
Sivapalan et al. (2003) pointed out that for predicting flow at ungauged
catchments, it is important to challenge and overcome the potential
problem posed by the “uniqueness in place” (Beven, 2000) of catch-
ments. It is hence important that the hydrologic models are para-
metrically efficient (parsimonious), and their parameters are identifi-
able from the available catchment data (Young and Romanowicz,
2004). DDD is a parsimonious rainfall-runoff model with few calibra-
tion parameters recently developed by Skaugen and Onof (2014), and
many of its other parameters can be estimated from the topography and
land use of a catchment (Skaugen and Onof, 2014). Previous experience
in using DDD for estimation of flow at ungauged catchments with daily
data showed satisfactory results (Skaugen et al., 2015). Since DDD is
one of the hydrological models which has features acknowledged for
prediction of flow at ungauged catchments, we used it in this study.

During the calibration of hydrological models, it is common and
probable that multiple calibration periods yield multiple optimum
parameter sets. Different sets of optimum parameter values may yield
similar performances, and this is designated as “equifinality” (Beven,
2006). Since conceptual hydrological models can be viewed as an em-
pirically derived combination of mathematical operators describing the
main features of an idealized hydrological cycle, one cannot rely on a
uniquely determined model parameter set or model prediction (Kuczera
and Parent, 1998). Consequently, attention should be given to un-
certainties in hydrological modelling. Prediction uncertainties in hy-
drological modelling arise from a variety of sources, such as errors as-
sociated with input data and data for calibration, imperfection in model
structure, calibration accuracy and uncertainty in model parameters
(Benke et al., 2008; Jin et al., 2010; Montanari, 2011). In this study,
uncertainty of the calibrated model parameters has been addressed.

Most of the regionalization methods applied so far are based on
daily temporal resolution in catchments ranging from small to large
sizes (Masih et al., 2010; Merz et al., 2006). Hailegeorgis et al. (2015)
and Viviroli and Seibert (2015) have done regionalization studies with
hourly resolution, but the studies are not specific to small catchments.
Response times of small catchments are typically less than 24 h, and
thus for flood forecasting purposes, hydrological models are required to
provide simulations at high temporal resolution (Reynolds et al., 2017).
Therefore, regionalization of model parameters for small catchments
with sub-daily time resolution is important.

In this study, we have regionalized the DDD model parameters for
small catchments with hourly time resolution in order to predict flows
at ungauged rural small catchments in Norway. The specific research
objectives are:
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1. To evaluate the performance of the DDD rainfall-runoff hydrological
model on rural small catchments with hourly temporal resolution
(areas from 1 km2–50 km2). It includes the selection of parameters
to calibrate, or to fix, the model goodness of fit and uncertainties in
the calibration parameters.

2. To evaluate multiple regression-based regionalization against a
physical similarity-based regionalization method.

3. To analyze and assess whether there is a combined regression and
physical similarity method for regionalizing DDD model parameters.

2. Study area and data

Forty-one gauged small rural catchments located across Norway are
used in the study. We selected the catchments from the Norwegian
Water Resources and Energy Directorate (NVE) HYDRA II database of
gauged catchments. Our definition of a small catchment follows that of
Fleig and Wilson (2013) with an upper area limit of 50 km2. The
number of catchments is limited by the availability of hydro-meteor-
ological data with the required temporal resolution of 1 h and a length
of record that makes calibration possible. Seven additional gauged
catchments, which are not used in the model calibration, have been
used in validation. Fig. 1 shows the location of the study and test
catchments.

Time series of precipitation, temperature and discharge are the
main input data for running and calibrating the DDD model.
Precipitation and temperature are based on a 1 × 1 km gridded product
of the Norwegian Meteorological Institute (http://thredds.met.no/
thredds/catalog.html) with hourly temporal resolution (Lussana et al.,
2016). Since the data is available from 2010 onwards, we have used a
total of five years of data for calibration and validation. The DDD model
uses distributed precipitation and temperature data as input for the
model’s 10 elevation zones extracted from the hypsographic curve of a
catchment. The elevation of the center of each temperature and pre-
cipitation grid cell has been extracted from the 10 × 10 m digital ele-
vation model (DEM) of Norway. For the model elevation zone that
contains more than one grid cell, mean of the values of temperature and
precipitation is used. Hourly discharge data have been obtained from
the Norwegian Water Resources and Energy Directorates (NVE) HYDRA
II database.

The constant model parameters during the simulation period are
derived from an analysis of hydro-meteorological, topographical and
land use data for a catchment using GIS. The source of the topography
and land use data is the Norwegian Mapping Authority (www.statkart.
no). The 10 × 10 m DEM, the river network and the 1: 50 000 scale
land use data have been retrieved and used in the study. The DEM has
been re-conditioned to the naturally occurring river network using the
DEM reconditioning tool from Arc Hydro to create a hydrologically
correct terrain model that can improve the accuracy of watershed
modeling (Li, 2014). The re-conditioned DEM is further used to de-
termine the distance distributions of hill slopes and river networks as
needed by DDD.

3. Methodology

3.1. Model structure

The DDD model is written in R programming language (R Core and
Team, 2017) and currently runs operationally with daily and three-
hourly time steps at the Norwegian flood forecasting service at NVE.
Subsurface and dynamic runoff are the two main modules of the model.

The volume capacity of the subsurface water reservoir, W (mm), is
shared between a saturated zone with volume S (mm) and an un-
saturated zone with volume D (mm). If the saturated zone is high, the
unsaturated volume has to be small (Skaugen and Onof, 2014). The
actual water volume present in the unsaturated zone is described as Z
(mm). The subsurface state variables are updated after evaluating

whether the current soil moisture, Z(t), together with the input of rain
and snowmelt, G(t), represent an excess of water over the field capacity,
R, which is fixed at 30% (R = 0.3) of D(t) (Skaugen and Onof, 2014). If
G(t) + Z(t) > R*D(t), then the excess water X(t) is added to S(t).

X t Max G t Z t
D t

D tExcess water ( ) ( ) ( )
( )

R, 0 ( )= +
(1)

dS
dt

X t Q tGroundwater ( ) ( )= (2)

d Z
dt

G t X t Ea tSoil water content ( ) ( ) ( )= (3)

dD
dt

dS
dt

Soil water zone = (4)

Ep cea TPotential evapotranspiration = (5)

Ea Ep S Z
W

Actual evapotranspiration = +
(6)

Q t( ) is runoff, and Ea t( ) is the actual evapotranspiration which is
estimated as a function of potential evapotranspiration and the level of
storage. A degree hour factor (cea) is positive for positive temperature
(T) and zero for negative temperature. Ea is drawn from Z. This is in-
deed a simplification, but experience from Skaugen and Onof (2014)
shows that the evapotranspiration routine in DDD calculates similar
values to the approach used in HBV (Bergström, 1976). A recession
analysis of the observed runoff from the catchment is used to estimate
the catchment scale fluctuations of storage (the capacity of the sub-
surface water reservoir, W, see Skaugen and Mengistu, 2016).

The dynamics of runoff in DDD has been derived from the catch-
ment features using a GIS combined with runoff recession analysis. The
method for describing the runoff dynamics of a catchment is built on
the distance distribution derived from the catchment topography. The
distances from the points in the catchment to the nearest river reach are
calculated for marsh and soil (non-marsh) parts of a hillslope. Previous
studies in more than 120 catchments in Norway showed that the ex-
ponential distribution described the hillslope distance distribution well,
and the normal distribution described well the distances between points
in the river network and outlet of a catchment (Skaugen and Mengistu,
2016; Skaugen and Onof, 2014). Fig. 2 shows a map of the distance
distributions of the marsh and soil (non-marsh) parts of the hillslope
and river network for the Valen catchment and the corresponding
empirical cumulative distribution functions. Fig. 3 shows the structure
of the DDD model. All GIS work is done with ArcMap 10.3, and the
recession analysis is done using the R script.

In the model, water is conveyed through the soils to the river net-
work by waves with celerity determined by the actual storage, S(t), in
the catchment (Skaugen and Mengistu, 2016; Skaugen and Onof, 2014).
The celerity associated with the different levels of subsurface storage is
estimated by assuming exponential recessions with parameter Λ in the
equation Q t Q e( ) t t

0
( )0= , where Q0 is the peak discharge im-

mediately before the recession starts. is the slope of change per time
(t) of the recession in the log-log space and calculated using Eq. (7). The
distribution of Λ is modeled using a two-parameter gamma distribution.

t Q t Q t( ) log( ( )) log( ( t))
t

= +
(7)

The celerity, v, is calculated as a function of Λ using Eq. (8).

v d
t

mean= (8)

dmean is the mean of the distances from points in the catchment to
the nearest river. The capacity of the subsurface reservoir W (mm), is
divided into storage levels i corresponding to the quantiles of the dis-
tribution of Λ under the assumption that the higher the storage, the
higher the value of Λ. Each storage level is further assigned a celerity
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i
d

t
i mean= (see Eq. (8)), where i is the parameter of the unit hydro-

graph for the individual storage level i, and estimated such that the
runoff from several storage levels will give a unit hydrograph equal to

the exponential unit hydrograph with a parameter i. With the as-
sumption that the recession and its distribution carry information on
the distribution of catchment-scale storage, we can consider that the

Fig. 1. Locations of the study and test catchments used in Norway.
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temporal distribution of catchment-scale storage, S(t), is a scaled ver-
sion to that of Λ. S(t) is calculated using Eq. (9), and its distribution is
modelled using a two-parameter gamma distribution.

S t
e

( ) Q(t)
1 t( )= (9)

3.2. Model parameters and calibration

The model has three main groups of parameters. The first group are
those determined by model calibration against observed discharge (the
upper 5 in Table 1), the second group are those estimated from ob-
served hydro-meteorological data (the lower 4 in Table 1 and the upper
3 in Table 2), and the third group are those estimated from geo-
graphical data (all in Table 2 except the upper 3). The calibration of the

Fig. 2. Map of distance distribution of marsh, non-marsh (soil) part of hill slope and river network and the corresponding empirical cumulative distribution functions
for catchment Valen.

Fig. 3. Structure of the Distance Distributions Dynamics model adapted from Skaugen and Onof (2014). Left panel: the storage model and right panel: hydrographs of
hillslope and river.
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model is performed using the probability particle swarm optimization
(PPSO) algorithm (Lu and Han, 2011). The Kling-Gupta efficiency cri-
teria (KGE) has been used as an objective function for the calibration
(Gupta et al., 2009), and the KGE and BIAS (ratio of the mean of si-
mulated to observed discharge) have been used to evaluate the cali-
brated results. In addition, the hydrographs of all catchments are vi-
sually inspected.

The calibration intervals of the parameters are set based on litera-
ture and experience in using the DDD model (Skaugen and Mengistu,
2016; Sælthun, 1996). Since cea and degree hour factor for snow melt
(Cx) are sensitive to the temporal resolution, we used the DDD model
calibration results from 84 catchments with daily time step (Skaugen
et al., 2015) as a starting point, and literature review for setting the
intervals of hourly time step. The mean celerity for river flow (rv) has a
standard value of 1 m/s in using DDD with catchments ranging from
small to large sizes (Skaugen and Mengistu, 2016) with daily time steps,
but it has been calibrated with an interval of plus or minus 0.5 m/s of
the standard value for hourly resolution. From experience and field
measurements, we have set the calibration interval of maximum liquid
water content of snow (pro) between 3% and 10% (Fierz et al., 2009;
Saloranta, 2012).

For the 41 study catchments, we have calibrated the model on
2–3 years of data and validated on 1–2 years. The selection of the period
is mainly based on the availability of flow and gridded precipitation
and temperature data. The gridded precipitation data in Norway is
highly uncertain due to rugged terrain and few precipitation stations in
elevated areas. The data used does not include the correction for un-
dercatch due to the wind, and the relation between the precipitation
and elevation is introduced only locally around the station locations. As
a result, the predicted precipitation field may potentially underestimate
the actual precipitation, especially at higher elevations where the

station network is sparser such as at the mountainous region of the
southern part of Norway (Frauenfelder et al., 2017; Lussana et al.,
2018). Accordingly, we introduced a precipitation correction factor to
take this into account so that the long-term water balance is correct.
The correction factor is applied to those catchments that give BIAS less
than 0.8, and the correction factor is the ratio of long-term mean annual
discharge to mean of simulated discharge. For purely ungauged
catchments, the long-term mean annual discharge is estimated from a
gridded map of average annual runoff for Norway for the period
1961–1990 (Beldring et al., 2003). The threshold temperature for rain
or snow and snow melt are fixed with a value of 0.5 °C and 0.0 °C, re-
spectively, based on literature (Saloranta, 2012; Skaugen, 1998). This is
done to avoid regressed parameters that do not have a clear physical
relationship with any of the catchment descriptors, but which can be
fixed on a physical or an empirical basis. Removing parameters from
calibration also strengthens the parsimony of the model. Table 1 lists
the nine model parameters needing regionalization (five calibrated and
four estimated from recession analysis), and Table 2 lists the non-re-
gionalized model parameters. The snow routine in DDD has two non-
regionalized parameters. The shape parameter (a0) and the decorrela-
tion length (d) of the gamma distribution of snow and snow water
equivalent (SWE) (Skaugen and Weltzien, 2016) are estimated from the
previous calibration of 84 catchments in Norway (Skaugen et al., 2015).

3.3. Uncertainty analysis of calibrated parameters

We calibrated the model using probability particle swarm optimi-
zation (PPSO) algorithm with 500 calibration runs for each study
catchment and sampled sets of parameters from the calibration runs for
uncertainty analysis. To select behavioral sets of parameters, we used a
threshold KGE value of 70th percentile (a value below which at least

Table 1
List of nine model parameters needing regionalization.

Parameters Description of the parameter Method of estimation Unit Intervals of calibration

pro Maximum liquid water content of snow Calibration fraction 0.03 ─ 0.1
cx Degree hour factor for snow melt Calibration mm °C−1 h−1 0.05 ─ 1.0
CFR Degree hour factor for refreezing Calibration mm °C−1 h−1 0.001 ─ 0.01
cea Degree hour factor for evapotranspiration Calibration mm °C−1 h−1 0.01 ─ 0.1
rv Celerity for river flow Calibration meter/second 0.5 ─ 1.5
Gshape Shape parameter of λ Recession analysis of observed runoff Positive real number not calibration parameter
Gscale Scale parameter of λ Recession analysis of observed runoff Positive real number not calibration parameter
GshInt Shape parameter of Λ Recession analysis of observed runoff Positive real number not calibration parameter
GscInt Scale parameter of Λ Recession analysis of observed runoff Positive real number not calibration parameter

Table 2
Non-regionalized model parameters which are unique to the local catchment of interest.

Symbol of parameters Description of the Parameter Method of estimation

a0 Parameter for new spatial distribution of SWE, shape parameter From spatial distribution of observed precipitation
d Parameter for new spatial distribution of SWE, decorrelation length From spatial distribution of observed precipitation
MAD Long term mean annual discharge From long term observed mean annual flow data
area Catchment area GIS
maxLbog Maximum distance of marsh land portion of hillslope GIS
midLbog Mean distance of marsh land portion of hillslope GIS
bogfrac Areal fraction of marsh land from the total land uses GIS
zsoil Areal fraction of DD for soils (what area with distance zero to the river) GIS
zbog Areal fraction of distance distribution for marsh land (what area with distance zero to the river) GIS
midFl Mean distance (from distance distribution) for river network GIS
stdFL Standard deviation of distance (from distance distribution) for river network GIS
maxFL Maximum distance (from distance distribution) for river network GIS
maxDl Maximum distance (from distance distribution) of non-marsh land (soils) of hill slope GIS
midDL Mean distance (from distance distribution) of non-marsh land (soils) of hill slope GIS
midGl Mean distance (from distance distribution) for Glacial GIS
stdGl Standard deviation of distance (from distance distribution) for Glacial GIS
maxGl Maximum distance (from distance distribution) for Glacial GIS
Hypsographic curve 11 values describing the quantiles 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 GIS
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70% of the values lie) from the 500 runs for each study catchment.
Evaluating several thousand calibration runs with an hourly resolution
at 41 study catchments is computationally costly. To check whether the
500 runs used in the calibration give different behavioral sets from
several thousand calibration runs, we ran the model with 2000 runs at
one catchment, and 5000 and 10,000 runs at another catchment. All the
study catchments are run with the behavioral sets of parameters, but
the results are presented only for four randomly selected catchments.
For each timestep, we sampled the number of discharge values equal to
the number of behavioral parameter sets for each catchment, and the
minimum and maximum discharges are used to estimate the width of
the uncertainty bounds.

3.4. Regionalization methods

We used 41 catchments with KGE greater than or equal to 0.55 for
the regionalization of the model parameters. For the three re-
gionalization methods used in this study, 19 catchment descriptors
(CDs) readily available from catchment data are used at the start and
later refined based on their significance in estimating model parameters
(Table 3). Since the selected catchments are widely spread across
Norway, the spatial proximity method of regionalization may not be
favored and is not considered in this study (Oudin et al., 2008). Vali-
dation of the regionalization methods is done assuming a selected
number of gauged catchments to be ungauged and then comparing si-
mulated runoff (using the regionalized parameters) with observed
runoff.

3.4.1. Multiple regression method
The multiple regression equations, which are used to relate the CDs

with the model parameters, are fitted to the calibrated model para-
meters of the 41 catchments. We used a stepwise regression procedure
for building the regression model. We build the model from 19 candi-
date CDs by entering and removing CDs in a stepwise manner into the
regression model until there is no convincing reason to enter or remove
any more. Before starting to use the step wise procedure, we removed a
CD which is highly correlated with another CD(s). To identify the
correlation between the CDs, we have plotted the scatter plot matrix of
the CDs (predictors). When R-Squared of correlation between two CDs
is greater than or equal to 0.5, they are considered as highly correlated.
The stepwise procedure is described in detail as follows:

i) We set a significance level of 0.2 for deciding when to enter into
and remove from the stepwise model. We set the significance level
so that it is not too difficult to enter CDs into the model and not too
easy to remove CDs from the model.

ii) We fit each of the one-predictor models that regress each model
parameter with all CDs one by one. Example: celerity of river flow
(rv) against bare mountain (B), rv against forest (F), etc.

iii) Of those predictors (CDs) whose P-value is less than 0.2, the first
predictor introduced to the stepwise model is the CD that has the
smallest P-value. Accordingly, bare mountain is the first predictor
for celerity of river flow.

iv) If no predictor (CD) has a P-value less than 0.2, stop fitting the
regression model (CFR is a typical example for this step).

v) Now, we fit each of the two-predictor models that include the first
CD as a predictor. Example: rv on B and Rs, rv on B and U, etc.

vi) Of those predictors whose P-value is less than 0.2, the second
predictor put in the stepwise model is the predictor that has the
smallest P-value. For the celerity of river flow (rv), river slope was
deemed the “best” second predictor, and it is therefore entered
into the stepwise model.

vii) Now, since the bare mountain was the first predictor, we step back
and see if entering river slope into the stepwise model somehow
affects the significance of the bare mountain predictor. That is,
check whether the P-value of bare mountain is less than 0.2 or not.
If the P-value is less than 0.2, the first predictor (bare mountain) is
retained in the stepwise model.

viii) Continue the steps as described above until adding an additional
predictor does not yield a P-value below the significant level
chosen.

Both linear and non-linear (logarithmic) forms of the response
variables (model parameters needing regionalization) and predictors
(CDs) are tested in the regression model. If the non-linear values con-
tribute significantly, then the non-linear form is retained in the model
with the transformed value.

3.4.2. Physical similarity method
The physical similarity method relies on the assumption that the

same parameter set should be successful in physically similar catch-
ments (Merz and Blöschl, 2004; Oudin et al., 2008; Parajka et al., 2005;
Zhang and Chiew, 2009). The transfer can be made from one or several

Table 3
Statistics of the catchment descriptors (CDs) of the study catchments used in the regionalization.

S.no Catchment Descriptors Symbol Minimum Maximum Average Unit

1 Topographic
1.1 Area A 1 50.7 28.2 km2

1.2 Mean of grid to grid slope Mg 8 64.8 28.4 %
1.3 Mean of elevation Me 59.6 1372 654 m
1.4 Mean of non-marsh land distance from the river Ms 131.1 434.2 236.7 m
1.5 Mean of marsh land distance from the river Mm 0 389.4 140.1 m
1.6 Mean of river length from the outlet Mr 421.3 11422.5 5459.6 m
1.7 Standard deviation of river length from the outlet Sr 262 5583.6 2531.2 m
1.8 River Slope Rs 7.5 146 49 m/km

2 Land Uses
2.1 Lake L 0 13.6 5.63 %
2.2 Effective lake Le 0 11 2.3 %
2.3 Bare mountain B 0 93.7 48.2 %
2.4 Cultivated land C 0 35 1.8 %
2.5 Forest F 0 94.3 32.7 %
2.6 Marsh land M 0 28.9 4.6 %
2.7 Urban U 0 1.5 0.1 %
2.8 Glacial G 0 5.1 0.3 %

3 Hydro-meteorological
3.1 Mean annual precipitation Mp 679 3090 1543 mm
3.2 Mean annual temperature Mt −2.5 7.2 2.6 oC
3.3 Specific discharge Sq 11.3 150.8 58 l/(s*km2)
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donor catchments on the basis of a chosen similarity method (McIntyre
et al., 2005). The method transfers entire parameter sets from gauged to
ungauged catchments instead of establishing links between model
parameters and CDs. In this study, we used two types of physical si-
milarity methods i.e. single-donor based, and pooling-group based. We
used 12 CDs (2 hydro-climatic, 4 land uses, 3 topographic and 3 that
can describe the runoff dynamic processes in DDD). The CDs used are:
area, mean elevation, mean of soil (non-marsh land) distance from a
river, mean of marsh land distance from the river, mean of river dis-
tance from outlet, river slope, effective lake percentage, forest, urban,
mean annual precipitation, specific discharge and bare mountain.

For the single-donor type, we used a rank accumulated method of
physical similarity in selecting a donor catchment to a test catchment
(Oudin et al., 2008; Zhang and Chiew, 2009). For each CD, the catch-
ment with the most similar descriptor to the test catchment is assigned
rank 1, the catchment with the second most similar descriptor is as-
signed rank 2, and so on. When two or more catchments have the same
value of CDs with the test catchment, they have been assigned the same
rank. The rank numbers of CDs have been added for each of the study
catchments. Each CD used for regionalization is given equal weight in
the ranking system (Oudin et al., 2008). All the 41 catchments are
considered in the selection of the most similar catchment to each of the
7 test catchments. The single gauged catchment with the smallest total
rank is used as a donor catchment.

In the pooling-group type, the parameters for an ungauged site are
estimated from the calibrated parameters of a pooling-group, i.e., a set
of gauged catchments considered to be most similar to the target un-
gauged catchment in terms of some set of CDs (Kay et al., 2006, 2007).
Kay et al. (2006) defined physical similarity by Euclidean distance in a
space of CDs that was determined for each model parameter as shown
in Eq.10.
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where j indicates one of a total of J CDs (12 in this study), Xa j, is the
value of that CD at the ath test catchment, Xb j, is the value of the CD at
bth study catchment, and x j, is the standard deviation of the CD across
all the N study catchments (41 in this study). Kay et al. (2007) suggests
that around a 10-member pooling group is preferable to a much larger
number, particularly when many CDs are used to define Euclidean
distance for the pooling group. K (7 in this study) closest neighbors
(minimum distance) are selected to create a pooling group for the test
catchments.

After identifying the pooling group, the estimate of the model
parameter at the test catchment a ( a

PG) is calculated as a weighted
average of the corresponding parameters from the study catchments in
the pooling group. Kay et al. (2007) stated that it is more appropriate to
write the expression for the model parameter as a weighted average of
the estimated parameter values, m, for all catchments (N) as shown in
Eq. (11).
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Catchments not in the pooling group are given a weight ham equal to
zero, but those in the pooling are assigned weights to reflect their im-
portance which is based on the distance measure dista b, as defined in
Eq. (10). The weights of the pooling group members are estimated by
Eq. (12).

h S1am am= (12)
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Where dista max, is set to be 10% larger than the maximum distance of a
pooling group member from the test catchment, a. In this study, we
used a linear weight assigning method.

3.4.3. Combined method
The 9 model parameters needing regionalization come from two

groups with different estimation methods. In the combined method, the
new parameter set is derived by combining regression and physical
similarity methods, i.e., when regression is used for the first group,
physical similarity is used for the second group and vice versa.

4. Results

4.1. Calibration

To evaluate the performance of the DDD model in calibration and
validation, we used the KGE, BIAS and visual inspection of hydro-
graphs. The model performs satisfactorily (0.5 ≤ KGE < 0.9) both for
the study (for calibration and validation) and for the test catchments
(for calibration). The minimum and maximum KGE values during ca-
libration of the study catchments are 0.55 and 0.89 respectively while
the median is 0.71. The minimum and maximum KGE values during
validation are 0.4 and 0.88 respectively while the median is 0.66. The
median BIAS value for calibration and validation is 0.88. As stated in
Thiemig et al. (2013), 0.75 ≤ KGE < 0.9 is good, 0.5 ≤ KGE < 0.75
is intermediate and 0.0 ≤ KGE < 0.5 is poor. When validating, 5, 27
and 9 study catchments show poor, intermediate and good KGE values
respectively. Except for one catchment, all test catchments give sa-
tisfactory calibration results. The visual inspection of the hydrographs
shows underestimation of floods caused by heavy precipitation.

4.2. Uncertainty of calibrated parameters

From parameter samples of different sizes at two of the study
catchments, the frequency histograms and dotty plots of the behavioral
calibrated parameters show the same optimal value for the different
sizes. Fig. 4(a) and (b) show the histogram and dotty plot for one ca-
librated parameter (celerity of river flow), respectively. The results
show that we have the same value of optimal parameter at 500, 5000
and 10,000 iterations, and hence a sample size of 500 appears to be
sufficient for the uncertainty analysis of calibrated parameters.

The frequency histograms of behavioral calibrated parameters for
the 41 study catchments are analyzed. The results of histograms (pro,
cea, rv and cx) for the four randomly selected study catchments are
shown in Fig. 5(a) to (d). The histograms show that the calibrated
parameters have a well-identifiable modal value. The parameters max
out the calibration interval except for rv. For each timestep, we used
discharge values simulated from 170, 156, 183 and 179 behavioral
parameter sets in the calibration period to plot the uncertainty bounds
for the catchments with identification numbers (ID) 6.10, 19.107, 73.27
and 123.29 respectively. Examples of simulated ranges and observed
discharges are shown in Fig. 6.

4.3. Regionalization results

4.3.1. Regression method
The multiple regression equations are shown in Eqs. (13)–(20). The

overall multiple regression model for CFR is statistically insignificant,
hence the mean of the 41 calibrated catchments (0.007) has been used
as the regionalized model parameter. For catchments with a CD value of
zero in a logarithmic expression, a value of 1 has been assigned. The
units of the model parameters are presented in Table 1. There is a
probability that parameters estimated using the multiple regression
equations can lie outside of the calibration intervals. In this case, we
will use the nearest boundary value from the calibration interval.
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rv R0.83 0.05log( ) 0.003Bs= + + (16)

Gscale L S Mexp( 5.12 0.12 0.22 ln( ) 0.3 log( ))e q e= + + (17)

Gshape M S0.82 0.0005 0.009p q= + (18)

GshI Gshape2.047 0.658= (19)

GscI Gscale0.49 0.0014= (20)

The standardized residuals of the regression model for the response
variables show a distribution close to normal (Fig. 7). Fig. 7 shows that
few large and small values deviate from the approximated straight line
of normal probability plot while many of the residuals lie along the
straight line. Fig. 8 shows the actual (calibrated and estimated from
observed hydro-meteorological data) and predicted values of the re-
sponse variables with the multiple regression model. The standard error
of estimate is a measure of the accuracy of the regression model pre-
dictions and informs how much uncertainty is associated with the
model prediction. The standard error result of the regression model
shows that there is uncertainty in the predicted values. Table 4 presents
the summary of the multiple correlation coefficient (R2), their sig-
nificance and standard errors for the 41 catchments used in the re-
gionalization. The non-parametric Spearman rank correlation was used
(Seibert, 1999).

4.3.2. Physical similarity method
For the single-donor type, Table 5 summarizes the smallest total

rank used to select a donor catchment. For the pooling-group type, we
analyzed different numbers of group members (3–20) to get an over-
view on the dependency of KGE values on the number of group mem-
bers. The KGE values are slightly sensitive to the number of group
members (Table 6). Table 7 presents the seven pooling-group members
for test catchment 19.79, with Euclidian distance, the weights and the

weighted-average value (regionalized value) for celerity of river flow
(rv).

4.3.3. Combined method and comparison of methods
The DDD model parameters needing regionalization are two groups.

The first group is estimated from calibration, and the second group is
estimated from observed hydro-meteorological (described in detail
under Section 3.4.3). Table 8 presents the regionalized model para-
meters using the three methods (physical similarity, multiple regression
and combined) for one of the test catchments (ID 25.32) and compares
with the calibrated parameters and parameters derived from recession.

The KGE and BIAS performance results for the three regionalization
methods are presented in Table 9. KGE and BIAS values have an op-
timum value of 1. Fig. 9 presents the observed and predicted hydro-
graphs using the three regionalization methods for two of the test
catchments, and Table 10 compares the performance of calibration
against regionalization methods.

5. Discussion

5.1. Model performance and parameters

The evaluation of calibration and validation results shows that the
DDD model performs satisfactorily, but we have observed under-
estimation of floods caused by heavy precipitation events. The main
reason for the underestimation of floods is likely an underestimation of
the higher precipitations in the gridded data. Comparisons of the
gridded precipitation with gauged data for the Svarttjønnbekken (ID
123.29 and area 3.6 km2) and Hokfossen (ID 123.28 and area 8.1 km2)
catchments show that the gridded value is lower than the gauge-re-
corded data for several floods. Since we do not have rain gauges in-
stalled within the other small catchments used, we have to rely on the
gridded data for the nationwide study. Another reason could be the
assumption that the GIS- derived model parameters are constant during
low, medium and high flows. The distance distributions of the marsh
land and soil (non-marsh) land of hillslope and the distance distribution
of the river network could be different during the three flow conditions.
During heavy precipitation events (that can cause damaging floods), the
river network transporting overland flow could increase and produce
faster runoff generation, and it will be a topic for further investigation.

Fig. 4. Frequency histogram and dotty plot of celerity of river flow for three different sample sizes at the study catchment with identification number 19.107.
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5.2. Uncertainty of calibrated parameters

Both the dotty plots and the frequency histograms of the 5000 and
10,000 sample sizes have the same shape and distribution as the 500-
sample size for the behavioral parameters. The histograms and dotty
plots of the river flow celerity for the catchment with ID 19.107
[Fig. 4(a) and (b)] show that the optimum celerity parameter is iden-
tifiable and has the same value (1.25 m/s) for sample sizes of 500, 5000
and 10000. Similar findings have been obtained using sample sizes of
500 and 2000 at another study catchment.

The calibrated parameters show one clear peak or most frequent
value for almost all the study catchments even if the peak is at the
extreme boundaries of the calibration interval for some parameters. The
sharp and peaked distributions are associated with well-identifiable
parameters, and the parameter estimates can unambiguously be in-
ferred as modal values, while flat distributions indicate more parameter
uncertainty (Blasone et al., 2008; Jin et al., 2010). The identifiability of
the parameters and their small uncertainty resulted in the narrow width
of uncertainty bounds (the difference between the maximum and
minimum discharge for each hour). The small uncertainty of the cali-
brated model parameters reduces uncertainty in the model predictions
at ungauged catchments. Two model parameters (degree hour factor for
evapotranspiration and snow melt) show sharp, peaked and skewed

distribution to the lower boundary of the calibration intervals. Since the
intervals are set based on experience, field results and literature, the
skewness indicates that we can get a higher performance criteria (KGE)
if we let the calibration parameters go beyond the specified intervals.
However, we believe that gaining a higher KGE value in these cases
comes with a cost of less realistic model parameters, and it was decided
to keep the parameter intervals within a reasonable value.

5.3. Regionalization methods

5.3.1. Multiple regression and physical similarity
The multiple regression performs satisfactorily in regionalizing the

DDD model parameters, despite the uncertainty in the regression
model. The pooling-group method also performs satisfactorily in re-
gionalizing the model parameters despite the slight sensitivity of the
method to the number of pooling-group members.

Significant correlations have been obtained between model para-
meters and CDs for the regression equations. Effective lake percentage,
mean annual precipitation, specific discharge and mean elevation of the
catchments are used to estimate the shape and scale parameters of λ
and Λ. The scale parameter of λ is correlated with the effective lake
percentage, the mean elevation and the specific discharge in the
catchment. The shape and scale parameters of Λ are highly correlated

Fig. 5. Frequency histograms of liquid water in snow (pro), degree hour factor for evapotranspiration (cea), degree hour factor for snow melt (cx) and celerity of river
flow (rv).
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Fig. 6. Uncertainty bounds of DDD simulations due to calibrated parameters and observed discharges at four of the study catchments selected randomly.

Fig. 7. Normal probability plots of the standard residuals of the multiple regression model.
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with the shape and scale parameters of λ (0.98 and 0.99, respectively).
This correlation is expected since the latter is derived from the former
(see Skaugen and Onof, 2014). Accordingly, we estimate the shape and
scale parameters of Λ from the shape and scale parameters of λ with
multiple linear regression.

The performance of the multiple-regression method in this study
strengthens the statement that relating model parameters to catchment

characteristics offers a possibility for estimating hydrological model
parameters to predict flow at ungauged catchments (Magette et al.,
1976). The results obtained in this paper are consistent with what
Magette et al. (1976) obtained using 21 catchments in USA in the re-
gionalization of six selected parameters of the KWM hydrological model
using hourly data. They found that the hydrological model with the
regressed parameters was successful in predicting flow at ungauged
small catchments. The satisfactory performance of the multiple re-
gression equations is in agreement with the recent results of Skaugen
et al. (2015) who used daily data on small and large catchments in
Norway. The finding that multiple-regression method gives better re-
gionalization is also supported by Young (2006) who compares mul-
tiple-regression against a nearest-neighbor-based method. The perfor-
mance of the multiple- regression method is also supported by the study
results of Post and Jakeman (1999). They regressed six IHACRES model
parameters from six landscape attributes, and the predictions made at
the daily stream flow at ungauged catchments gave very good results
for some catchments.

The pooling-group type performs better than the single-donor type
for group members ranging from 3 to 20. The pooling group perfor-
mance is as good as the multiple regression if we vary the number of
members in the pooling group (Table 6) for each test catchment (e.g. if
we take catchment ID of 19.79 and 104.22, a pooling group of 17 and 7
members gives as good KGE as the multiple regression, respectively). If
we select fixed number of group members, multiple regression performs

Fig. 8. Actual and predicted values of the response variables using the multiple regression model.

Table 4
Summary of the multiple correlation coefficient of determination (R2), their
significance (p-value) and standard error of the study catchments.

Parameter Description of the
parameter

R2 Significance (p-
value)

Standared
Error

pro Liquid water in snow 0.4 0.01 0.03
cx Degree hour factor for

snow melt
0.42 0.0001 0.35

cea Degree hour factor for
evapotranspiration

0.51 0.0001 0.28

rv Celerity for river flow 0.14 0.06 0.3
Gshape Shape parameter of λ 0.2 0.03 0.32
Gscale Scale parameter of λ 0.43 0 0.5
GshInt Shape parameter of Λ 0.97 0 0
GscInt Scale parameter of Λ 0.98 0 0
CFR Degree hour factor for

refreezing
The regression model is statistically
insignificant

Table 5
Summary of the smallest total rank and the donor catchments for the 7 test catchments.

Test catchments ID Area(km2) Donor catchments ID Area(km2) Smallest total rank

Gravå 19.79 6.3 Hangtjern 12.212 11.2 94
Knabåni 25.32 49.1 Jogla 26.26 31.1 123
Kjemåvatn 163.7 36.6 Viertjern 16.127 46.6 116
M.Mardalsvan 104.22 13.5 Nysetvatn 74.24 28.8 124
Fjellhaugen 42.16 7.3 Fjellanger 63.12 12.8 100
Tjellingtjernbekken 18.11 2.1 Gramstaddalen 29.7 1 98
Strandå 165.6 23.3 Laksåbru 168.3 26.8 108
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slightly better than the pooling group method. We selected 5, 7 and 10
members for further analysis. A group of 7 members performs as well as
a group of 10 members. The group of 5 members performs slightly
lower than the groups of 7 and 10 members. Finally, the group of 7
members is considered an optimal size of the pooling-based physical
similarity in this study.

The performance of the pooling-group method in this study adds to
the confirmation that the method can be applied for regionalization in
different regions with different rainfall-runoff hydrological models.
Regionalization results from 119 catchments across England, Wales and
Scotland (46 with hourly data,73 with daily data and size ranging from
1 km2 to 1200 km2), showed that pooling-group method performed best
with the conceptual hydrological model Probability Distributed Model
(PDM), (Kay et al., 2006). Bao et al. (2012) regionalized Variable In-
filtration Capacity (VIC) model parameters using multiple-regression
and multiple-donor (5 donors) physical-similarity methods at 55
catchments of China and found that the multiple donor performed
better than multiple regression.

5.3.2. Combined method
Generally, the combined method (which uses recession parameters

estimated from multiple regression and calibrated parameters from the
pooling-group method of physical similarity) performs slightly better
than multiple-regression and physical-similarity methods (Table 9). The
better performance of the combined method shows that multiple-re-
gression is slightly better than pooling-group method in estimating the
recession parameters while the pooling method is slightly better than
the regression method in estimating the calibrated model parameters.

The hydrographs are also used for evaluation of the performance of
the regionalization methods in addition to the KGE and BIAS. The hy-
drographs in Fig. 9 show that the combined method predicted the
magnitude and the shape of the observed hydrographs better than the
multiple- regression and pooling-group methods of regionalization. The
floods are underestimated in both the presented hydrographs. When we
look at the hydrograph of the catchment with ID of 25.32, the combined
method predicted the timing and magnitude of the 2014 summer flood
better than the pooling-group method, but the pooling-group method of

Table 6
KGE values of different numbers of members of the pooling-group based physical similarity.

ID Multiple regression Number of members of the pooling-group based physical similarity

3 4 5 6 7 8 9 10 12 15 17 20 Max KGE

18.11 0.44 0.36 0.35 0.35 0.39 0.41 0.41 0.41 0.42 0.42 0.42 0.41 0.41 0.42
19.79 0.67 0.44 0.41 0.61 0.64 0.63 0.64 0.65 0.64 0.65 0.69 0.67 0.69 0.69
25.32 0.74 0.7 0.71 0.71 0.72 0.72 0.7 0.69 0.69 0.68 0.68 0.68 0.68 0.72
42.16 0.75 0.71 0.72 0.72 0.72 0.72 0.73 0.73 0.73 0.72 0.72 0.72 0.72 0.73
104.2 0.65 0.56 0.58 0.61 0.61 0.62 0.59 0.56 0.55 0.53 0.53 0.61 0.51 0.62
163.7 0.75 0.71 0.73 0.7 0.65 0.66 0.67 0.68 0.67 0.67 0.68 0.68 0.67 0.73
165.6 0.57 0.6 0.6 0.61 0.6 0.6 0.62 0.61 0.61 0.62 0.62 0.62 0.62 0.62
Mean 0.65 0.58 0.59 0.62 0.62 0.62 0.62 0.62 0.62 0.61 0.62 0.63 0.61 0.65

Table 7
Pooling-group based method of physical similarity for the celerity of river flow at test catchment with catchment identification number (Cat.ID) 19.79.

ID of Pooling
group members

Euclidean distance
(dista,b)

Celerity of river
flow(rv)

Linearly decreasing
weights(Sam)

Weights of the pooling
group members(ham)

ham * rv

29.7 2.26 1.44 0.589 0.411 0.594
12.212 2.26 0.70 0.590 0.410 0.286
123.29 2.47 1.08 0.645 0.355 0.384
6.1 2.65 0.71 0.690 0.310 0.219
16.66 3.05 0.99 0.795 0.205 0.203
174.3 3.47 1.15 0.903 0.097 0.111
8.6 3.49 0.59 0.909 0.091 0.053
The weighted average of the estimated celerity of river flow will be the ratio between the two as stated in Eq. (11).

Therefore, the regionalized value of rv using the pooling-group based physical similarity method is
1.851/1.88=0.99m/s

h rm am v1
41

=
1.851

hm am1
41

=
1.880

Table 8
Summary of model parameters estimated from three methods of regionalization for a test catchment ID 25.32. For combined method, values in italic are transferred
with regression while the remainder is transferred using physical similarity.

Model Parameters Calibration and runoff Recession analysis Regression Physical similarity Combined (pooling and regression)

Calibration Recession Single donor Pooling group

pro 0.1 … 0.1 0.1 0.09 0.09
cx 0.1 … 0.137 0.183 0.14 0.14
CFR 0.01 … 0.007 0.01 0.01 0.01
cea 0.02 … 0.014 0.03 0.02 0.02
rv 0.5 … 1.11 1.013 1.15 1.15
Gshape … 1.139 1.187 0.735 0.9 1.187
Gscale … 0.055 0.034 0.06 0.04 0.034
GshInt … 1.521 1.771 0.899 1.2 1.771
GscInt … 0.024 0.015 0.029 0.02 0.015
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regionalization has a KGE value of 0.72 while the combined method has
a KGE value of 0.71.

The combined method combines the advantages from the two
methods of regionalizations used in this study (physical similarity and
multiple regression). Kokkonen et al. (2003) states that exploiting
merely relationships between calibrated model parameters and CDs can
result in a decrease in regionalization performance. Physical similarity
has an advantage of transferring the entire calibrated model parameters
from one or few gauged to ungauged catchments (Arsenault and

Brissette, 2014; McIntyre et al., 2005; Oudin et al., 2010; Parajka et al.,
2005). The recession parameters describe the integrated information of
how different factors influence the runoff process (Fiorotto and Caroni,
2013). Recession parameters are used in the DDD model to estimate the
subsurface storage capacity (Skaugen and Mengistu, 2016), and they
can also be used to model streamflow recession for regionalization and
prediction (Stoelzle et al., 2013). Vogel and Kroll (1996) state that re-
gression procedures for estimating hydrograph recession parameters
generally work well, which is supported by our findings in that the

Table 9
Summary of comparisons of the regionalization methods using KGE and BIAS. The green shows the best KGE values (close to 1) while the
blue shows the best BIAS value (close to 1).

Fig. 9. Observed and predicted hydrographs using multiple regression, pooling group and combined methods of regionalization at two test catchments.
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recession parameters estimated using multiple regression are slightly
better than those estimated by physical similarity. It must be noted,
however, that the recession parameters derived from the regression
method are estimated from hydrographs of 41 study catchments while
that of the pooling-group method are derived from hydrographs of only
7 study catchments.

The regionalized recession parameters of DDD model (estimated by
pooling-group, multiple regression and combined method) are, in some
cases, better than the recession parameters estimated locally from a
short period of hydro-meteorological data. This is the case for four of
the test catchments and makes the performance of the regionalization
methods better than the calibration result for the four catchments
(Table 10). The main reason that the single-donor type of physical si-
milarity performs the poorest is that the recession parameters in the
single donor type are estimated from hydrographs of a single catchment
while that of a pooling group and multiple regression are estimated
from hydrographs of 7 and 41 catchments respectively. The other
reason is probably the long distance between donor and test catch-
ments.

The main limitation of this study is related to the precipitation data,
mainly how heavy precipitation events are represented. As discussed
previously, there are studies which show that the gridded data set has
uncertainties and smooths out peaks (Lussana et al., 2018). To reduce
the uncertainty in the precipitation, we have introduced a precipitation
correction factor as mentioned in the methodology section, and we
estimate the precipitation correction factor for ungauged catchments
using a daily specific runoff map of Norway produced by NVE (https://
atlas.nve.no). Another limitation is related to the use of the daily spatial
variations of precipitation data for the gamma distributed snow para-
meters. Skaugen et al. (2015) used observed, daily precipitation data
from rain gauges to estimate the snow distribution parameters of DDD.
In this study, we assume that the daily spatial variation of precipitation
is similar to that of hourly variation, and we used the parameters from
the 84 calibrated catchments in Skaugen et al. (2015) due to the lack of
sufficient rain gauges with hourly temporal resolution. One source of
uncertainty in this study that is not yet quantified is the lack of long-
term discharge data with hourly resolutions for estimating the runoff

recession parameters, as they are sensitive to the length of the time
series.

6. Conclusions

The results of our study show that the DDD model performs sa-
tisfactorily both during the calibration and validation periods for small
rural catchments in Norway (area < 50 km2) with hourly temporal
resolution. The model underestimates floods generated by heavy pre-
cipitation events, and a method to improve the simulation of peak
floods should be further investigated.

The calibrated parameters in the DDD model are identifiable and
show small uncertainty in our analysis. The uncertainty bound of DDD
simulations due to the calibrated parameters is narrow, which shows
that the uncertainty due to calibrated parameters for predicting flow
using hourly temporal resolution is small, and this also indicates that
the model is suitable for regionalization.

Both the multiple-regression and pooling-group methods performed
satisfactorily (except for one test catchment, both methods gave a KGE
performance between 0.5 and 0.75). The combined method (which uses
recession parameters estimated from multiple-regression and calibrated
parameters from the pooling-group method of physical similarity)
performed slightly better than the pooling-group and multiple-regres-
sion methods. Therefore, the combined method of regionalization is
recommended as a method for estimation of flow at small rural un-
gauged catchments with hourly resolution in Norway. The recession
parameters estimated by the three regionalization methods are, for
some catchments, better than those estimated from a short period of
hydro-meteorological data.

The parameter parsimonious rainfall-runoff hydrological model
(DDD) has a capability of generating continuous flow data at ungauged
small rural catchments with hourly temporal resolution using re-
gionalized model parameters. The satisfactory performance of the
combined method shows that regionalization of DDD model parameters
is possible by combining multiple- regression and physical-similarity
methods.

Table 10
Comparison of the KGE performance of calibration with the satisfactorily performing regionalization methods (the green shows KGE values of methods are
better than calibration or the KGE values of calibration are better than methods).
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