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Abstract In the mountains of Norway, snow depth (SD) is highly variable due to strong winds and open
terrain. To investigate snow conditions on one of Europe's largest mountain plateaus, Hardangervidda, we
conducted snow measurement campaigns in spring 2008 and 2009 using airborne lidar scanning at the
approximate time of annual snow maximum (mid‐April). From 658 empirical distributions of SD at
Hardangervidda, each comprised about 4,000 SD values sampled from a grid cell of 0.5 km2, quantitative
tests have shown that the gamma distribution is a better fit for SD than the normal and log‐normal
distributions. When aggregating snow and terrain data from 10 × 10 m to 0.5 km2, we find that the standard
deviation of the terrain parameter squared slope, land cover, and the mean SD are highly correlated (0.7,
0.52, and 0.89) to the standard deviation of SD. A model for SD variance is proposed that, in addition to
addressing the dependencies between the variability of SD and the terrain characteristics, also takes into
account the observed nonlinear relationship between the mean and the standard deviation of SD. When
validated against observed SD variance retrieved from the same area, the model explains 81–83% of the
observed variance for spatial scales of 0.5 and 5.1 km2, which compares favorably to previous models. The
model parameters can be determined from a GIS analysis of a detailed digital terrain and land cover model
and will hence not increase the number of calibration parameters when implemented in
environmental models.

Plain Language Summary Using airborne laser, 400 million snow depth measurements at
Hardangervidda in Southern Norway have been collected. The amount of data has made in‐depth studies
of the spatial distribution of snow and its interaction with the terrain and vegetation possible. We find that
the terrain variability, expressed by the square slope, the average amount of snow, and whether the terrain is
vegetated or not, largely explains the variation of snow depth. With this information it is possible to develop
equations that predict snow depth variability that can be used in environmental models, which again are
used for important tasks such as flood forecasting and hydropower planning. One major advantage is that
these equations can be determined from the data that are, in principle, available everywhere, provided there
exists a detailed digital model of the terrain.

1. Introduction

Snow is an integral component of the hydrologic, ecological, and atmospheric systems in many countries. In
Norway 30% of annual precipitation falls as snow, and in themountain areas, asmuch as 50–60%. Knowledge
of snow amounts and its spatial distribution is necessary for the prediction of water availability and the tim-
ing of snowmelt rates and runoff, which are important for spring melt floods, hydropower production plan-
ning, and water resource management. In addition, the spatial features of snow are crucial for avalanche
warning/formation, reliable simulations of the energy, and mass exchange between land and the atmo-
sphere, ecology (plants and animal life), and the spatial extent and degree of permafrost (Gisnås et al., 2016).

The complex interaction between spatially variable precipitation, topography, wind, radiation, and vegeta-
tion shapes the spatial variability of the accumulation and melting of snow. In addition, these processes
act on different spatial scales ranging from tens to thousands of meters (e.g., Blöschl, 1999; Elder et al.,
1991; Liston et al., 2007), so both representative sampling and the modeling of snow are challenging tasks.

A multitude of physically and empirically based models are used for predicting the amount of snow and its
spatial distribution. Some models operate on a fine‐resolution grid scale (ranging from points, a few meters
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to hundreds of meters) (see, e.g., Brun et al., 1992; Liston & Elder, 2006) attempting to include a detailed,
multilayered and physically based process representation. These models require fine‐resolution meteorolo-
gical and terrain data and are hence demanding in information need and computation time. Other models
are typically more lumped in their approach where the aim is to represent the spatial distribution of snow
over areas of some extent (catchments or elevation zones of catchments) through the use of probability dis-
tribution functions (PDFs). In such models, that is, catchment hydrological models, an estimate of the fre-
quency of snow amounts over an area is more important than their exact location.

Many studies have shown that a realistically modeled spatial distribution of snow depth (SD) is important for
the assessment of snow‐covered area and, using the snow bulk density, to monitor the seasonal development
of water resources (Buttle & McDonnell, 1987; Essery & Pomeroy, 2004; Liston et al., 1999; Luce et al., 1999;
Luce & Tarboton, 2004). Based on observations, studies have shown that the SD distribution, especially at
the time of maximum accumulation, can be approximated by a two‐parameter log‐normal distribution
(Donald et al., 1995; Sælthun, 1996), a two‐parameter gamma distribution (Kolberg & Gottschalk, 2010;
Kuchment & Gelfan, 1996; Skaugen, 2007; Skaugen & Randen, 2013), or a normal distribution (Marchand
& Killingtveit, 2004, 2005). Helbig et al. (2015) investigated the spatial PDF of SD for three large alpine areas
close to the time of maximum snow and found that the gamma and the normal distributions were better sui-
ted than the log‐normal distribution. Similar results were also found by Winstral and Marks (2014) who
investigated 11 years of snow data from a semiarid intermountain watershed. In order to determine the
appropriate shape of the PDF of SD, one is obliged to estimate its statistical moments (the mean and variance
suffice for a two‐parameter distribution). Liston (2004) related fixed statistical moments of the PDF of SD to
terrain variability, air temperature, and wind. However, López‐Moreno et al. (2015) found differences in the
spatial coefficient of variation (CV) of SD for low (high CV) and high (low CV) spatial average SD, and Alfnes
et al. (2004), Skaugen (2007), and Skaugen and Randen (2013) demonstrated through the repeated measure-
ments of the same snow course during the accumulation and melting seasons that the spatial PDF of SD
changed its shape continuously. The shape evolves from skewed (high CV) at the beginning of the accumu-
lation season, to a more symmetrical distribution as the accumulation proceeds (low CV) and to a more
skewed again (high CV) as the snow melts. The letter three Norwegian studies reported on snow water
equivalent (SWE) but used the average snow density measured twice during the snow course to calculate
SWE from SD. The inferences on the distribution of SWE hence also apply to SD.

Many field‐based studies have investigated the relationship between SD variability and small‐scale terrain
parameters and vegetation type (see Clark et al., 2011, for a comprehensive review of recent literature), poten-
tial solar radiation (López‐Moreno et al., 2015), or just to the mean SD (Egli & Jonas, 2009; Egli et al., 2011;
Pomeroy et al., 2004). Linear or multilinear regression models and binary regression tree models have been
used to relate themean, the standard deviation, or the CV of SD to terrain parameters (e.g., slope, aspect, and
elevation). Typically, these types of models can explain about 18% to 91% of SD variability (Grünewald et al.,
2013). The models are often site specific and thus not transferable to other sites with other characteristics.
Grünewald et al. (2013) used multiple linear regression to examine SD data from several mountainous areas
around the world. Results from this study show goodmodel performance at each site, but a global model con-
taining all data sets could only explain 23% (or 30% excluding catchments with glaciers) of the variability.
Grünewald et al. (2013) therefore argued that SD and terrain are less universally related than as hypothesized
by Lehning et al. (2011), and the application of a globalmodel is limited. The performance of the linear regres-
sion model is dependent on the spatial scale, or support, of the data for which the model is developed. Jost
et al. (2007) showed, for example, that the performance of their model decreased if individual snow samples
were used instead of plot averaged values. Similar results were also found in Grünewald et al. (2013). At the
very small scale, simple local terrain characteristics have been unable to explain the SD distribution (Deems
et al., 2006; Grünewald et al., 2010; Grünewald et al., 2013; Trujillo et al., 2009). Much of the fine‐scale snow
variabilitymay be a result of small‐scale terrain effects that are not captured by the terrain parameters derived
from adjacent grid points in a digital terrain model (DTM) (Grünewald et al., 2013; Jost et al., 2007).

One of the reasons for the quite substantial volume of studies discussing the appropriate spatial frequency
distribution of snow is the difficulty of retrieving data sets of sufficient magnitude to estimate PDFs with a
reasonable certainty. This is especially problematic in areas where wind is a dominant influence on snow
distribution, as in mountains, tundra, and shrublands (Elder et al., 1991; Hiemstra et al., 2002; Liston &
Sturm, 2002; Marchand & Killingtveit, 2004; Schirmer et al., 2011; Sturm, Liston, et al., 2001; Sturm,
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McFadden, et al., 2001). The large spatial variability in SD and SWE in alpine catchments makes it is difficult
to obtain representative SD data by traditional measurement techniques (Anderton et al., 2004; Elder et al.,
1991; Erickson et al., 2005) since extensive measurement designs with a large number of snow courses are
required (e.g., Elder et al., 2009). In recent years the advances in laser ranging technology (LiDAR) both air-
borne LiDAR (AL) and terrestrial LiDAR together with digital photogrammetry offer powerful tools for SD
measurements in both alpine and forest areas and several studies have used these techniques (e.g., Deems
et al., 2006; Hopkinson et al., 2004). These relative new techniques give reliable, high‐quality, high‐spa-
tial‐resolution, and accurate SD information and thus allow for analyzing the distribution of SD over multi-
ple scales (e.g., Melvold & Skaugen, 2013). Recently AL, terrestrial LiDAR, and digital photogrammetry data
have also been used to investigate possible relations between SD and terrain characteristic (e.g., elevation,
slope, aspect, Winstral's wind index, and terrain roughness) (e.g., Grünewald et al., 2010; Helbig et al.,
2015; Lehning et al., 2011; Veitinger et al., 2014). Lidar SD data have also been used to verify different snow
modeling approaches from the relatively simple statistical model to high‐resolution dynamical models (Mott
et al., 2010; Trujillo et al., 2007, 2009).

In this study we will use spatially detailed measurements of both SD and the terrain obtained through AL
data from Hardangervidda, Southern Norway, to address three important issues for the representation of
snow in environmental models. (1) How is the variability of SD related to terrain characteristics, (2) what
is an appropriate model for the spatial PDF of SD, and (3) can we parameterize this distribution from avail-
able terrain information? The first point will be addressed by correlation analysis between snow and terrain
statistics and the second simply by investigating the shape of a large number of empirical distributions of SD.
For the third point, which is the main and novel contribution of this study, we will test the model for the
spatial variance of SWE presented in Skaugen and Weltzien (2016) for SD data. This approach will take into
account the nonlinear relationship between the mean and the standard deviation of SD as observed through
the changes in CV through the snow season. This is done by modeling the spatial variance of SD as the sum
of variables that are increasingly less correlated as the accumulation proceeds. This will allow for the shape
of the spatial PDF of SD to vary through the winter. Parameters of the model will be estimated from mea-
sured terrain parameters instead of from observed variability of precipitation which was used for SWE.
This represents an extension of the model, since terrain parameters, in principle, are obtainable everywhere,
provided there is a sufficiently detailed DTM.

2. Study Area and Data
2.1. Study Area

Hardangervidda is a mountain plateau situated in the eastern part of the western coastal mountain range of
Norway (Figure 1). It is one of the largest mountain plateaus in northern Europe and covers an area of about
6,500 km2. Most of the plateau is 1,000 m above sea level (m a.s.l.) and hence above the treeline. There are
many lakes, streams, and rivers, and most of the plateau is treeless and covered by boulders, gravel, bogs,
coarse grasses, mosses, and lichens. The low alpine regions in the northeast and southwest are dominated
by grass heaths and dwarf shrub. In the highest part in the west and southwest there is mostly bare rock
or lichen/marsh tundra. In the east, at about 1,100m a.s.l, the landscape is open and flat, whereas in the west
and south there are mountain ranges up to 1,700 m a.s.l. In the far northwest, the terrain plunges abruptly
down to the fjord Sørfjorden. The western coastal mountain range is a significant orographic feature
oriented normally to the prevailing westerly wind flow that dominates the weather in Norway. Moist air
masses are lifted by themountain range and produce an increase in precipitation with elevation on the wind-
ward slopes, as well as a decrease on the leeward side of the range and thus on the eastern part of
Hardangervidda. Based on the information from SeNorge.no (http://www.SeNorge.no) the snow accumula-
tion period begins in mid‐September in the highest areas, and snowfalls persist throughout the winter
months. Maximum snow accumulation is usually in middle to late April, which gives 7 months of snow
accumulation. Due to the complex topography of the area and a strong west‐east gradient in precipitation,
Hardangervidda exhibits large variations in precipitation. Mean annual precipitation varies between 750
and <3,000 mm over a distance of a few tens of kilometers and 50–60% of annual precipitation falls as snow.
The weather station at Sandhaug, run by the NorwegianMeteorological Institute, is situated at the middle of
one of our 80‐km‐long lidar flight lines (Fls) at the elevation of 1,250 m a.s.l. (Figure 1). The station provides
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wind measurements needed for estimating the Wind shelter index (Winstral et al., 2002), which is later used
as a terrain variable.

2.2. LiDAR Data

In order to study the SD distribution close to snow maximum in spring 2008 and 2009 at Hardangervidda,
Melvold and Skaugen (2013) adopted AL altimetry due to its high‐resolution and cost‐efficient features.
The AL data were collected along six 80‐km‐long Fls following a west‐east orientation and have a scanning
width of 1,000m (see Figure 1). The data were collected between 3 and 21 April 2008 (Fls 1–2, 21 April; Fls 3–
4, 19 April; and Fls 5–6, 3 April), 21–24 April 2009, and 21 September 2008. The autumn data set represents
the minimum snow cover where only perennial snow patches still exist and with leaf‐off conditions. In order
to reduce slope‐induced errors, only a 500‐m‐wide central part of the swath width was processed. Each Fl is
separated by 10 km in the north/south direction. In total, the data cover an area of 240‐km2 sampled in an
area of 4,000 km2 (80 × 50 km).

Collection, processing, and error estimates of the AL data are presented in detail in Melvold and Skaugen
(2013), and only a short summary is given here. The AL data were collected using a Leica ALS50‐II instru-
ment with a 1,064‐nmwavelength scanning lidar mounted in a fixed‐wing aircraft with a flying height above
the ground of ~1,800m. Data were collected at a nominal 1.5 × 1.5‐mground point spacing. The intensity per
pulse of the first and last returnswas recorded and classified as ground or no ground. The lidar processingwas
carried out by the lidar contractor (Terratec AS) using a vendor‐specific software (TerraScan and TerraPOS).

From the point clouds, winter and summer DTMswere produced from themean of all the points classified as
the ground to a regular grid of 2 × 2m. The number of original data points per grid cell varied from 0 (in steep
slopes and on water bodies) to 9, with an average point density of 3.5. Areas with zero original data points
create voids in the DTM, and only the smallest (<40 m2) were interpolated using an interpolation method
for hydrologically corrected raster surface based on Hutchinson (1989). Large negative values (defined as
<−1 m) and large positive values (defined as >+10) were excluded from the data set. The rest of the negative
SDs were set to zero (see Melvold & Skaugen, 2013, for more information). In practice, the data points
removed represent <0.01% of the total area sampled and have a negligible influence on SD statistics. All
measurements from water bodies (lakes and rivers) were also neglected. In total, we obtained ~8 × 106 SD
measurements for each Fl, which gives about ~48 × 106 points for each season.

Figure 1. Map of southern Norway and of Hardangervidda showing location of flight lines (fl.), and the Sandhaugmeteor-
ological station.
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We used the statistical coregistration method described by (Nuth & Kääb, 2011) to avoid having erroneous
SD changes from systematic shifts between snow‐free and snow‐covered DTMs. Melvold and Skaugen
(2013) investigated the accuracy of the AL data by comparing AL‐derived DTM data with global navigation
satellite systems data obtained in spring 2008 along Fl 2. They found that the elevation error ranged from
−0.95 to +0.51 m with a mean error of 0.012 m. The standard error was 0.12 m and very close to the error
of 0.11 m as stated by the lidar manufacturer. A more detailed description of errors is found in Melvold
and Skaugen (2013).

After the rasterization of the lidar data, the “snow‐free” September 2008 DTMwas subtracted from the snow
surface elevation, the April DTMs, to produce grids of SD.

The development of AL systems in recent years has increased, to some extent, the accuracy of snow data
obtained from AL data especially in forested or partly forested areas. The two main reasons are increased
sampling density and that the new AL is so‐called full‐wave‐form lidar (see, e.g., Deems et al., 2013, for more
information). In open areas with a single return, the benefit of full‐wave‐form lidar is small compared to the
earlier, discrete lidar systems such as the Leica ALS50‐II used in this study (Deems et al., 2013; Hancock
et al., 2015). More than 90% of Hardangervidda is treeless and thus generally a single‐return environment.
The forested areas consist of open boreal deciduous forest with birch trees and can, due to leaves‐off condi-
tions, also be considered a single‐return environment. An examination of the number of returns for each
laser pulse shows that 96% of the laser points are classified as first return and ground, so relatively few lidar
points are reflections from the canopy. Higher point density of the new AL system will improve the bare‐
earth and snow‐covered grid especially in forested area as the probability of forest canopy penetration
increases. Increased sampling density involves less interpolation and thus potentially less errors. This
depends, however, on terrain surface complexity, terrain slope, and the chosen grid element size.
Brubaker et al. (2013) and Thomas et al. (2017) have shown that a point density of 2–0.7 points m−2 is suffi-
cient for grid generation at 1‐ to 2‐m resolution and for the calculation of surface roughness parameters.
Based on the topography of Hardangervidda, a point density of 0.7 points m−2 and a grid resolution 2 mwere
chosen, which could indicate a slight undersampling. However, based on the error assessments presented in
Melvold and Skaugen (2013), the data have provided accurate estimates of SD to the decimeter scale and are
hence to be considered of sufficient quality to estimate SD distributions.

3. Methods
3.1. Terrain Parameters

The 2‐m‐resolution DTM was resampled to 10‐m resolution (LasDTM) in order to compare to the national
DTM of 10‐m resolution. The resampling takes the average of all elevations within the larger cell. This pro-
cedure results in a smoothing of the terrain and reduces the amount of data voids.

Based on the new LasDTM we computed several standard terrain parameters. Most terrain variables are
local, that is, calculated using the first and second derivatives of the immediate terrain surface. The chosen
terrain parameters were elevation, aspect, aspect classes, slope, squared slope, wind shelter index (Si), and
vector roughness measure (VRM).

The standard topographical variables elevation, slope, and aspect were obtained using standard GIS software
(ArcGIS software, ESRI). Aspect identifies the slope direction, that is, the downslope direction of the max-
imum rate of change in value from each cell to its neighbors. We used eight aspect classes: north, northeast,
east, southeast, south, southwest, west, and northwest.

Squared slope, SqS = tan2ω, where ω is the angle of incline (in radians), represents the rate of maximum
change in elevation value from each cell. The mean squared slope in Helbig et al. (2015) expresses the
squared ratio between typical height and typical width of topographic features and was used for the same
purpose as in this paper.

Wind shelter index (Si) is a terrain‐based upwind/downwind slope predictor developed by Winstral et al.
(2002) describing the exposure or shelter to prevailing winds of a location. We used a version of the
Winstral algorithm modified by Plattner et al. (2004). Si was estimated by using the RSAGA package
(https://CRAN.R‐project.org/package=RSAGA) developed in R (www.r‐project.org). The Si has been calcu-
lated using the most frequent wind direction (315°) measured at Sandhaug meteorological station (Figure 1)
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during the winter periods 2008–2009 and 2009–2010 (not shown) and for a maximum search distance of 100
m and for a chosen width of 30° (15° to each side of the main flow direction).

The VRM has been developed for GIS from a vector approach of Hobson (1972) by Sappington et al. (2010)
and is a measure of surface roughness that ranges from 0 (flat) to 1 (most rugged). The VRM was calculated
using the spatialEco package (https://CRAN.R‐project.org/package=spatialEco) developed in R (www.r‐
project.org). We calculated the VRM based on the 10‐m surface DTM using a standard 3 × 3 neighborhood.
More information about the VRM is found in Sappington et al. (2010).

In addition to the terrain‐ and the wind‐based parameters, also the effect of vegetation has been investigated.
The AL data cover areas with low‐growing vegetation mostly composed of heather (Calluna), sedges, and
grasses in the central part of Hardangervidda. In the lower, southern part, the AL data cover areas of open
boreal deciduous forest (e.g., Kastdalen & Hjeltnes, 2012). A vegetation/canopy fraction is calculated for
each grid cell using the National Land Cover Data AR50 vegetation class (https://register.geonorge.no/reg-
ister/versjoner/produktark/norsk‐institutt‐for‐biookonomi/ar50). Only grid cells with more than 20% of
deciduous forest and/or heather were classified as vegetated. Further stratification of vegetated cells into
forest/heather was not carried out due to the low number of vegetated cells.

3.2. Spatial Aggregation of Snow Depth and Terrain Parameters

In Norway, daily maps of interpolated temperature and precipitation on a 1 × 1‐km grid have for more than a
decade been used by the NorwegianWater Resources and Energy Directorate as the meteorological basis for
various operational forecasting services, such as flood, landslide, and avalanche forecasting. In addition,
daily maps of various snow parameters are produced based on the gridded meteorological maps (the
seNorge.no snowmodel Engeset et al., 2004; Saloranta, 2012, 2016). In order to explain the spatial variability
of SD at a scale similar to that of the operational hydrological services, we calculated the statistical moments
of SD (mean, standard deviation, skewness, and kurtosis) from the samples of 10 × 10‐mSDs for a rectangular
grid of 500 × 1,000m (not 1 × 1 km since the AL data only cover a 500‐m‐wide transect) and for grid cells with
more than 80% (i.e., >~4,000) of valid SD values. The number of grid cells for Fls 1 to 6 are 60 (6 vegetated), 51
(5 vegetated), 45 (4 vegetated), 59 (13 vegetated), 59 (6 vegetated), and 55 (14 vegetated), respectively.

To relate SD to terrain parameters, the corresponding statistical moments were also calculated for each of all
the terrain parameters.

3.3. An Analytical Model for the Spatial Frequency Distribution of SD

From the 500 × 1,000‐m aggregated data, we investigated which analytical statistical model best suits the
empirical distributions of SD. Given the high number of data points (each statistic is estimated from approxi-
mately 4,000 values), we have the opportunity to estimate statistical moments of high order with reasonable
certainty. A Cullen and Frey graph (Cullen & Frey, 1999) compares the skew and kurtosis of observed data to
theoretical values for different statistical models, such as the gamma, the log‐normal, and the normal. These
three models are typical candidates when an analytical expression for the spatial frequency distribution of
snow is needed. In a Cullen and Frey graph, normally distributed values will be located at the point skewness
= 0 and kurtosis = 3 (Yevjevich, 1972 p.128).

In addition to the qualitative analysis represented by the Cullen and Frey graph, we subjected the empirical
distributions of SD to more classic goodness of fit tests, such as the Anderson‐Darling test and the
Kolmogorov‐Smirnov test (see Delignette‐Muller & Dutang, 2015).

3.4. A Model for the Spatial Variance of SD in the Accumulation Season

The dynamic input to amodel for the PDF of SDwill typically be amean area value of SD, representing a grid
cell, a catchment, or parts of a catchment. We hence need a functional relationship between the mean and
the variance of SD in order to estimate the parameters of a (two‐parameter) spatial PDF of SD. In addition,
one needs to choose an analytical model for the spatial PDF. In Skaugen and Weltzien (2016), the observed
relationship between the spatial mean and standard deviation of precipitation was used to formulate such a
relationship. It was further noticed that the relationship between the spatial mean and the standard devia-
tion of precipitation was nonlinear in that the rate of increase of the spatial standard deviation deviated from
that of the spatial mean. For small values of the spatial mean, the relationship between the mean and the
standard deviation was approximately linear, whereas for higher values of the spatial mean, the standard
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deviation increased with a smaller rate or not at all. Such a behavior has been observed for measurements of
SD and SWE during the accumulation season, where the CV (spatial standard deviation over the spatial
mean) decreases as the accumulation seasons proceeds (see Alfnes et al., 2004). Skaugen and Weltzien
(2016) presented a model based on the gamma distribution for the spatial variance of SWE in which decreas-
ing temporal correlation is the cause of an attenuating contribution of variance as the accumulation pro-
ceeds. This implies that SWE is more evenly distributed in space as the mean SWE increases and that the
snow‐covered terrain is increasingly smoothed (see also Veitinger et al., 2014). In applying this model for
SD, we assume that the observed relationship between the mean and the standard deviation of SWE is simi-
lar for SD. Such an assumption is justified if we consider SD as proportional to SWE, that is, SWE = βSD,
where β is the spatially averaged bulk density of snow. Then it can be shown that E(SWE) = βE(SD) and
Std(SWE) = βStd(SD); hence, the relationship observed between the mean and the standard deviation for
SWEwill be the same, only scaled by β, for SD. Given an input of the spatial mean of SD, the spatial variance,
Var(SD), and the spatial mean, E(SD), of the accumulated sum of SD are estimated as follows (from Skaugen
& Weltzien, 2016):

Var SDð Þ ¼ E SDð Þ 1
α0

1þ n−1ð Þexp −n=Dð Þ½ � ¼ ν
α2

; (1)

E SDð Þ ¼ n
ν0
α0

¼ ν
α

(2)

where ν0 and α0 are the shape and scale parameters of a gamma‐distributed unit SD. In this study we choose
the mean value of the unit SD to be 1.0 m, so that ν0

α0
¼ 1 and ν0 = α0. (Skaugen & Weltzien, 2016, chose the

mean value of the unit SWE as 0.1 mm.) n is the number of accumulated unit SD (which in this study will be
the number of meters snow at the time of interest), and ν and α are the shape and scale parameters of the
gamma‐distributed accumulated SD. D is the decorrelation range (in meters of SD), where the exponentially
decaying correlation between snowfall units equals 1/e (Zawadski, 1973), exp(−n/D) = 1/e. The relationship
between the spatial mean and the spatial variance to the parameters of the gamma distribution is as follows:

ν ¼ E SDð Þ2
Var SDð Þ and α ¼ E SDð Þ

Var SDð Þ (3)

We intend to test this model for the spatial variance of SD and estimate its parameters (α0 and D, since ν0 is
determined by the chosen value of the unit snowfall, i.e., υ0/α0 = 1.0 m) using terrain information. The para-
meters α0 and D are estimated using the nonlinear (weighted) least squares (nls) method provided by R
(www.r‐project.org). With estimated mean and variance of the distribution, a suitable statistical model
(log‐normal, gamma, and normal) can be used to represent the spatial PDF of SD in environmental models.
See Skaugen and Weltzien (2016) on how equations (1)–(3) were developed for the gamma distribution.

3.5. Exploratory Analysis

In order to investigate possible relationships between the terrain parameters and SD variability, a correlation
analysis between snow and terrain statistics and between snow statistics was carried out for the 329 grid cells
for each year. The statistics that are correlated are estimated from >4,000 values from 10 × 10‐m grid‐cell
values within a 500 × 1,000‐m grid cell. The statistics (prefix in brackets) are median (Med), mean (M), stan-
dard deviation (Std), skewness (Skw), kurtosis (Kurt), shape parameter of the gamma distribution (ν), scale
parameter of the gamma distribution (α), and CV. The analysis was performed for each of the six Fls (45–60
grid cells), for the pooled data of all six Fls (329 grid cells) and for the different landscape classes (LSC1, 281
cells, and LSC2, 48 cells). The Spearman rank correlation method was used since it has no assumption of
normally distributed variables.

4. Results
4.1. Correlation Between Snow and Terrain Parameters

At the 500 × 1,000‐m scale significant correlations (p value < 0.001) were found between SD and terrain
parameters expressing terrain variability (not shown). For both years, high correlations (0.63–0.70) were
found between Std_SD and standard deviation of slope, SqS, VRM, and Si. The correlations between the
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M_SD and the mean of the terrain parameters SqS and VRM are weaker
(0.60–0.61). The other terrain parameters (aspect, elevation, and aspect
classes) showed no significance or weaker correlations.

The correlations between the terrain parameters are high. For example,
the standard deviation of SqS is correlated to the standard deviation of
VRM, Si, and elevation with 0.91, 0.90, and 0.79, respectively. This sug-
gests that only one of the parameters should be used since little new infor-
mation is obtained by including additional terrain parameters. Although
VRM has a slightly higher correlation with Std_SD than SqS (0.70 vs.
0.69 in 2008 and 0.64 vs. 0.63 in 2009), SqS is chosen as the terrain para-
meter for this study since SqS is simpler to calculate than VRM and is
independent of wind data (unlike Si).

4.2. Correlation Analysis for the Statistical Moments of Snow
Depth and Squared Slope

From the findings in the previous section, we further investigated the rela-
tionship between snow and the terrain parameter SqS. In addition, we
investigated whether it would be relevant to stratify the SD statistics
according to landscape classes (LSC). When pooling all grid cells for the
six Fls together for the 2009 data, we could see that the snow statistics
(M_SD and Std_SD) were significantly correlated (p value < 0.001) to
LSC with correlations equal to 0.37 and 0.52, respectively (not shown).

Based on this finding, we continue the correlation analysis for separate LSC.

The results of the correlation analysis between SD and SqS statistics for LSC1 are shown in Table 1. As very
few data points (48 grid cells) describe the snow/terrain statistics for forest/wetlands (LSC2), few correla-
tions were found significantly different from zero and are not shown. Correlations for snow statistics are
shown in Table 2 for the two different LSC.

From Table 1, we note that especially M_SD and Stdt_SD are well correlated with M_SqS and Std_SqS. The
higher statistical moments for SD, such as the skewness and kurtosis, are not significantly, or very weakly,
correlated with SqS. On the other hand, Table 2, upper triangle (LSC1), shows how the meanM_SD is highly
correlated to the higher moments of SD (variance, skewness, and kurtosis). In addition, we see that the shape
(ν_SD) and scale (α_SD) of the gamma distribution are highly correlated to the mean SD. In the lower trian-
gle (LSC2), we find that the M_SD is correlated to Std_SD, but not to the higher statistical moments of SD.

4.3. Choosing a Statistical Distribution for the Spatial PDF of Snow Depth

Figure 2 shows how the skewness and kurtosis estimated from 329 empirical distributions (both LSC are
included) of SD for the years 2008 (a) and 2009 (b), compared to the theoretical values of the normal, log‐
normal, and gamma distribution. The colors represent how the mean SD of each distribution compares to
the highest mean SD for each year. Blue indicates means close to the maximum; green and finally red indi-
cate means smaller than the maximum. There is a substantial scatter for both years, but especially for 2009,
the gamma distribution seems to be the best suited. In addition, we can note that as the mean increases (the
color trends toward blue), the skew decreases (points to the left), indicating that the individual distribution
changes shape as a function of the mean, which is consistent with the high correlations found between
M_SD and the higher‐order moments of SD, ν_SD, and α_SD for LSC1 in Table 2.

All empirical distributions were subjected to goodness of fit tests (see Delignette‐Muller & Dutang, 2015)
such as the Anderson‐Darling test and the Kolmogorov‐Smirnov test. Using the Anderson‐Darling test,
68% were best approximated using the gamma distribution, 14% the log‐normal, and 18% the normal distri-
bution. When testing the distributions for the individual LSC, the partition became 68%, 14% and 18% for
LSC1, and 70%, 17%, and 13% for LSC2. Similar results were obtained using the Kolmogorov‐Smirnov test.

4.4. Estimating Parameters for the Spatial Variance Model of SD

The correlation analysis above has shown that parameters describing the variability of the terrain are highly
correlated to the variability of snow for the bare rock class (LSC1). We have also seen that the Std_SD is

Table 1
Correlation Between SD and SqS Terrain Statistics for All Flight Lines, 2008
and 2009 for LSC1, Bare Rock.

2008 Med_SqS M_SqS Std_SqS Skw_SqS Kurt_SqS

Med_SD 0.55 0.56 0.55 0.23 0.23

M_SD 0.60 0.62 0.61 0.24 0.24

Std_SD 0.68 0.70 0.70 0.27 0.27

Kurt_SD −0.34 −0.33 −0.32

ν_SD −0.33 −0.33 −0.31

CV_SD 0.33 0.36 0.38

2009 Med_SqS M_SqS Std_SqS Skw_SqS Kurt_SqS

Med_SD 0.43 0.45 0.45 0.25 0.24

M_SD 0.49 0.51 0.52 0.26 0.26

Std_SD 0.62 0.65 0.66 0.29 0.29

Kurt_SD −0.21 −0.21 −0.21

ν ¯ SD −0.24 −0.25 −0.25 −0.20

CV_SD 0.36 0.38 0.40

Note. Prefixes are defined in section 3.4. Only significant (p value
< 0.001) correlations are shown. The color shading represents higher/
lower correlation.
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Table 2
Correlation Between Snow Statistics for All Flight Lines for 2008 and 2009.

2008 Med_SD M_SD Std_SD Skw_SD Kurt_SD ν_SD α_SD CV_SD

Med_SD 1 0.99 0.81 −0.68 −0.70 −0.83 0.66

M_SD 0.99 1 0.88 −0.62 −0.69 −0.78 0.60

Std_SD 0.40 0.46 1 −0.38 −0.63 −0.56 0.37 0.45

Skw_SD 1 0.87 0.95 −0.99 0.44

Kurt_SD 0.66 1 0.88 −0.86

Sh_SD −0.47 −0.43 0.97 0.66 1 −0.96 0.32

Sc_SD −0.99 −0.69 −0.98 1 −0.42

CV_SD 0.76 1

2009 Med_SD M_SD Std_SD Skw_SD Kurt_SD ν_SD α_SD CV_SD

Med_SD 1 0.98 0.81 −0.69 −0.71 −0.85 0.69

M_SD 0.99 1 0.89 −0.61 −0.68 −0.80 0.61

Std_SD 0.55 1 −0.38 −0.57 −0.59 0.38 0.42

Skw_SD 1 0.92 0.96 −1 0.47

Kurt_SD 0.83 1 0.92 −0.92 0.18

ν_SD −0.53 0.98 0.83 1 −0.96 0.34

α_SD −1 −0.84 −0.98 1 −0.47

CV_SD 0.73 0.58 −0.60 1

Note. Correlations for LSC1, bare rock is in the upper triangle, and correlations for LSC2, wetlands/forest is in the lower
triangle (in italics). Only significant (p value < 0.001) correlations are shown. The color shading represents higher/
lower correlation.

Figure 2. Cullen and Frey graphs of the skew and kurtosis of 658 empirical distributions for 500 × 1,000‐m grid cells at
Hardangervidda for 2008 (a) and 2009 (b) compared to the theoretical values of the gamma, log‐normal, and normal
(skewness = 0 and kurtosis = 3) distribution. Blue color indicates mean values close to the maximummean, and green to
finally red indicate mean values smaller than the maximum mean.
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highly correlated to M_SD. Hence, we conclude that the Std_SD is a function of M_SD, a dynamic variable,
and the spatial variability of the terrain, a static variable. In addition, Figure 3 shows that the relationship
between M_SD and Std_SD often is nonlinear, which, for SWE in Skaugen and Weltzien (2016), was
explained by the decreasing correlation between the accumulated snowfall units. Figure 3 also shows the
model (equation (1)) with model parameters estimated using nonlinear and linear least square methods
for the Hardangervidda data for 2008 and 2009. The models are fitted to different classes of Std_SqS for
LSC1 (0.0 ≤ Std_SqS < 0.05, 0.05 ≤ Std_SqS < 0.1, and Std_SqS ≥ 0.1) and to the landscape class LSC2,
wetland/forest. At Hardangervidda, the LSC2 area is typically smooth and hence with a low Std_SqS (see
Figure 3d) where histograms of the slopes for LSC1 and LSC2 are shown. It is therefore not possible to
differentiate with respect to Std_SqS for LSC2. The thresholds for Std_SqS were decided from a qualitative
assessment that appeared consistent for both 2008 and 2009. Table 3 shows the estimated parameters of
the model, the scale parameter of the unit snowfall α0, and the decorrelations range D (measured in
meters of snow). Nonlinear functions were fitted to the LSC1 and for Std_SqS greater than 0.05. For
Std_SqS < 0.05 and for LSC2, it was only possible to fit linear functions. The snow variability for the 2
years shows very similar behavior.

4.5. Model Validation

In Figures 4a and 4b we resampled 230 (70%) of the data points 32 times and estimated themodel parameters
for each sample. The models were then validated predicting Std_SD for the opposite year. Correlation (Cor),
bias, and explained variance (ExplVar) are hence estimated from ~10,000 points. In Figure 4c we used 230
data points (70%) from each year to estimate parameters of the mean model 51 times. The models were vali-
dated predicting Std_SD for the points not used to estimate model parameters (~10,000 points). Figure 4d
shows how the model could be applied for catchment‐scale information of terrain and LSC. The SD and
SqS statistics were estimated for 48 aggregated grids of size 5.1 km2 (500 m × 10.25 km), which is closer to

Figure 3. Model of the spatial variability of SD fitted to the 2008 (a) and 2009 (b) AL data. The mean model is in panel (c).
The colors indicate model and observations for different classes of squared slope and landscapes. Blue, Std_SqS ≥ 0.1;
magenta, 0.05≤ Std_SqS < 0.1; black, 0.0 < Std_SqS < 0.05; and green, wetlands and forest (LSC2). All units are in meters.
Panel (d) shows the histograms of slopes for LSC1 and LSC2, with SqS = 0.1 and 0.05 indicated with vertical lines.
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the scale of a catchment or elevation bands in a semidistributed hydrolo-
gical model. The same bootstrapping procedure as above was used, and
the models were validated predicting Std_SD for the points not used to
estimate model parameters (~6,000 points). The explained variance of
the mean model for the scale of 5.1 km2 is equal to that of 0.5 km2.

Table 2 shows very high correlations between the M_SD and the Std_SD
with 0.88 and 0.89 respectively for the years 2008 and 2009. It is therefore
instructive to investigate if such a linear relationship between the stan-
dard deviation and the spatial mean can be an alternative or even a better
model. Such a linear model is equivalent to assuming a constant CV of SD
similar to the model in Pomeroy et al. (2004). Figure 5a shows the result of
a model where the spatial standard deviation of SD is a linear function of
the spatial mean. A similar bootstrapping procedure as in Figure 4c was
applied. We also investigated how the parameterization of Helbig et al.
(2015) compared with our model. We calculated the topographic para-
meters needed for the Helbig et al. (2015) expression for the standard
deviation of SD from our LasDTM for each grid cell of 500 × 1,000 m
and bootstrapped the calibration parameters as above. Figure 5b shows

the results and that the explained variance (ExplVar) for the Helbig et al. (2015) parameterization is higher
than for the model that assumes constant CV, but lower than for the model proposed in this study.

In Figures 4 and 5, points from each Fl from LSC1 have different colors. In the effectively 4,000‐km2
‐large

area, no apparent spatial biases in the north (Fl 1)‐south (Fl 6) direction can be seen.

Figure 4. Observed standard deviation of SD versus bootstrapped simulated values using 70% of data. Colored circles
indicate different flight lines as shown in legend. Green circles represent LSC2. (a) Model based on 2008 data validated on
2009 data. (b) Model based on 2009 data validated on 2008 data. (c) Mean model validated on 30% of 2008–2009 data.
(d) Mean model for 5.1 km2 validated on 30% of 2008–2009 data.

Table 3
Parameters of Std_SD Model 2008 and 2009 and Mean Model for Different
Std_SqS Values and for LSC1 and LSC2

Std_SqS α0 D Regression type

2008
>0.1 1.43 2.56 Nonlinear
0.05–0.1 1.92 3.64 Nonlinear
0.0–0.05 0.49 Linear
Wtl/Forest 0.29 Linear
2009
>0.1 1.34 2.4 Nonlinear
0.05–0.1 1.63 3.01 Nonlinear
0.0–0.05 0.55 Linear
Wtl/Forest 0.38 Linear
Mean model
>0.1 1.39 2.48 Nonlinear
0.05–0.1 1.78 3.32 Nonlinear
0.0–0.05 0.52 Linear
Wtl/Forest 0.33 Linear
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5. Discussion

It has been a longstanding ambition to model snow variables from topographical and vegetation charac-
teristics of the landscape. Many studies report quite modest correlations between snow and these charac-
teristics (Gisnås et al., 2016; Jost et al., 2007; Lehning et al., 2011), and furthermore, these correlations are
dependent on the spatial support of the dependent variable and the independent variables (Erxleben
et al., 2002; Jost et al., 2007). For the applied scale in this study, 0.5 km2, we find significant correlations
between snow statistics, such as the mean and the standard deviation of SD and the statistics (mean and
standard deviation) of the terrain parameter Sqs calculated from the 10 × 10‐m grid cell values comprised
by the 0.5‐km2 grid. In addition, we find significant correlations to LSC when we stratify the data into
bare rock (LSC1) and wetland/forest (LSC2). Gisnås et al. (2016) and Lehning et al. (2011) also found high
correlations in Norway and Switzerland, respectively, when relating SD variability to various roughness
indexes for alpine areas. It is noticeable that including information of wind (i.e., using the Winstral index
Si) does not lead to increased correlations between terrain and of SD at the scales used in this study.
Several authors discuss the dominant processes for shaping the distributions of SD at different scales
(Clark et al., 2011; Liston, 2004). At the scales used in this study (≥0.5 km2), orographic precipitation
is suggested as the dominant process. One might argue that topography also shapes the near‐surface wind
fields, which also influences the snow deposition (Lehning et al., 2008; Mott et al., 2011), so perhaps, at
scales ≥0.5 km2, the wind effect of wind is already captured when using terrain as a predictor for snow
distribution. Especially for LSC1, the correlations between the M_Sd and Std_SD are high. Pomeroy
et al. (2004) found similar correlations for various landscape types in Canada, and a constant CV model
(see section 4.5) may be justified. It is interesting to note, however, that M_SD is also highly correlated to
the skewness and kurtosis of SD (and the ν and α parameters of the gamma distribution), statistics that
measure the shape of the distribution (see Table 2 and also Figure 2). We can also note (from Table 1)
that SqS is less influential for the skewness and kurtosis of SD. These findings suggest that the shape

Figure 5. Observed standard deviation of SD versus bootstrapped simulated values using 70% of data. (a) Constant CV
model and (b) the parameterization of Helbig et al. (2015). Colored circles indicate different flight lines as shown in
legend. Green circles represent LSC2.
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of the distribution of SD during the accumulation season is dynamic (since M_SD changes) and more
influenced by the amount of snow than the terrain.

The Cullen and Frey graphs (Figures 2a–2b in Cullen & Frey, 1999) show that the normal, the log‐normal,
and the gamma distribution may, for individual snow courses, all be reasonable choices for the spatial fre-
quency distribution of snow. The goodness of fit tests, however, favor the gamma distribution for 68% of
the empirical distributions. In addition to being the best fit to the empirical distributions, the gamma distri-
bution has attractive mathematical features, which have been used to model spatial distribution of SWE in
hydrological models (Skaugen, 2007; Skaugen & Randen, 2013; Skaugen &Weltzien, 2016). In such a model,
the spatial distribution of SWE is dynamic, that is, its shape evolves from skewed at the beginning of the
accumulation season, to a more symmetrical distribution as the accumulation proceeds and to a more
skewed again as the snow melts. This pattern has been observed for measured spatial distributions of SD
and SWE (see Alfnes et al., 2004; Skaugen, 2007) and partly for SD in this study (see Figure 2 and the corre-
lations in Table 2).

The abundance of data presented in this study confirms and clearly illustrates the nonlinear relationship
between the spatial mean and standard deviation of SD (see Figure 3). Although a linear approach seems
appropriate for small and medium mean SDs (<2–3 m), we can see, in Figure 3, that the rate of increase
for the standard deviation decreases as themean increases. The presentedmodel captures the nonlinear rela-
tionship by introducing correlation (equation (1)) and by stratifying the model according to squared slope
and LSC. The results for estimating the spatial variability of SD, shown in Figure 4 with explained variance
for spatial scales of 0.5 and 5.1 km2 ranging from 81–83%, compare favorably with the alternative parame-
terizations of constant CV and that of Helbig et al. (2015) shown in Figure 5. The model of Helbig et al.
(2015) has strong similarities to our model since it includes topography (which is parameterized including
squared slope) and the mean SD and has a CV that decreases as the mean increases. The influence of topo-
graphy is represented by a constant. A difference between the models is that in our model, the effect of the
topography is dynamic, that is, as the SD increases, the significance of correlation and its variance contribu-
tion decreases (see equation (1), where the last term [the correlation] decreases as n increases). The distribu-
tion of SD hence evolves toward a more symmetrical distribution, which is consistent with the observations
shown in Figure 2. The study of Helbig et al. (2015) predicted the standard deviation of SD for scales increas-
ing from 0.0025 to 9 km2 with an overall explained variance of 45%. The results in Figure 4 also compare well
to other previous studies on spatial variance of SD. In Grünewald et al. (2013), the spatial variability of SD at
mountainous sites across the world was modeled locally with multiple regression at a scale of 0.16 km2 with
explained variance of 30% to 91%. A global model, however, only achieved 23% explained variance. López‐
Moreno et al. (2015) found that multiple regression model for predicting the variance of SD explained 50%
at 25 × 25‐m scale and 70% at the 0.01‐km2 scale. Common to the models in Helbig et al. (2015), López‐
Moreno et al. (2015), and Grünewald et al. (2013) is that increasing the spatial scales increases the explained
variance. In our study, however, the explained variances for 0.5 and 5.1 km2 are equal (see Figures 4c
and 4d).

The model presented here appears to work well for the study area using observed terrain variability and
observed mean SD. In operational hydrology, however, we would have to rely on modeled mean SD either
from interpolated meteorological grids or numerical weather prediction models using estimated snow bulk
density. Such procedures obviously introduce uncertainty through model structures and calibrated para-
meters. The SeNorge snow model (Saloranta, 2012) has, since 2004, estimated SWE, SD, and hence snow
density for all of Norway on a 1 × 1‐km2 grid at a daily basis with acceptable results (see Skaugen et al.,
2018). Themodel presented here can be used to validate the spatial properties of SD in suchmodels and form
the basis for parameterizing the spatial variability of SWE in hydrological models.

Although the results are presented for data acquired at a time of (the assumed) “peak accumulation,” the
model performs well over a range of mean SD values. This suggests that the model can be used to estimate
the spatial variance of SD at any time during the accumulation season. In the melt season, however, Egli and
Jonas (2009) demonstrate hysteresis effects between the mean and standard deviation of SD, so the func-
tional relationship between the mean and standard deviation found for the accumulation season may no
longer apply. The model appears to work well for both LSC and with no apparent north‐south biases. The
model needs, however, to be further validated for different regions.
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6. Conclusions

When snow and terrain parameters were aggregated to 500 × 1,000 m, we found that the standard deviation
of several terrain parameters is highly correlated with the standard deviation of SD. The terrain parameters,
and the squared slope in particular, explain large parts of the spatial variance of snow. In addition, the spatial
standard deviation of SD was significantly correlated to LSC (bare rock and wetland/forest) and to the mean
spatial SD. Themean spatial SDwas also highly correlated to the skew and kurtosis of SD, indicating that the
shape of the distribution of SD is dynamic, that it evolves as accumulation proceeds. The collection of terrain
parameters investigated in this study was highly correlated, suggesting that little additional information is
gained by including more than one terrain parameter.

In order to establish which analytical statistical distribution best represents the SD distribution at
Hardangervidda, we visually inspected the Cullen and Frey graphs of 658 empirical distributions, of which
each consisted of approximately 4,000 SDs sampled from the 0.5‐km2 grid cells The Cullen and Frey graphs
show that gamma, log‐normal, and normal all can be suitable choices of PDF, but by the Anderson‐
Darlington test and Kolmogorov‐Smirnov test, the gamma distribution emerged as the most suitable distri-
bution for 68% of the distributions, 14% the log‐normal, and 18% the normal. The Cullen and Frey graphs
also show how the skew and kurtosis of the distribution of SD decrease as the M_SD increases.

A model for the spatial standard deviation of SD is proposed that combines the mean SD, the terrain para-
meter SqS, and the LSC to determine the variance of SD.When validated, the model explained 81–83% of the
observed variability of SD for the spatial scales of 0.5 and 5.1 km2.We have chosen the gamma distribution to
approximate the shape of the spatial frequency distribution of SD, and the model provides the mean and var-
iance of SD so that the parameters of the gamma distribution can be estimated. The gamma distribution can
hence serve as a model for SD in environmental models. This exercise needs to be repeated for AL data from
a different region (or a country) so that the possible generality of the method can be verified.
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