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ABSTRACT. A model is put forward which focuses on the dynamical evolution of the
spatial distribution of snow water equivalent (SWE).We make use of the fact that when
the accumulation and ablation process of the snow reservoir is modelled as a summation
of a gamma-distributed variable, both skewed distributions, typical of alpine areas, and
more normal distributions, typical of forested areas, can be accounted for. A particular
problem is to represent fractional snow-covered area (SCA) within the distribution
framework.The change in SCA as a response to a melting event is explicitly linked to the
shape of the distribution of SWE and is estimated as the probability of non-exceedance of
the melted amount from a scaled version of the spatial distribution of SWE. An extensive
snow-measuring programme, where several snow courses have been measured repeatedly
throughout the melting season, justifies the dynamical aspects of the snow distribution in
the modelling approach.The modelling approach has been tested with the Swedish rain-
fall^runoff model, HBV, and estimated values of SWEand SCAare comparedwith results
obtained using the statistical distribution (log-normal) traditionally used in the model.

INTRODUCTION

A major cause of flooding in Norway is the combination of
intense snowmelt and precipitation. In order to be able to
forecast these flooding events, we need a reliable forecast of
precipitation and temperature, and a good estimate of the
snow reservoir and its coverage in the catchment at the time
of the forecast. The Swedish rainfall^runoff model, HBV
(Bergstro« m, 1992; S�lthun, 1995), is used operationally for
flood forecasting at the Norwegian Water Resources and
Energy Directorate (NVE) and has been supplemented
with a snow routine developed for use in Norway which
accounts for the development of the snow reservoir and the
snow coverage at different altitude levels (Killingtveit and
S�lthun,1995).This routine is developed under the assump-
tions that precipitation as snow is log-normally distributed
in space with a fixed coefficient of variation and perfectly
correlated in space. These assumptions imply that, at all
times, the maximum of a new snowfall event will appear in
exactly the locationwhere themaximum snowfall from pre-
vious snowfall events is already found. In addition, the dis-
tribution of accumulated snow will have a fixed coefficient
of skew and therefore not comply with the principle of the
central limit theorem (Feller,1971, p.258) which implies that
the distribution of accumulated events is less skewed than
single events. The ablation process is modelled as uniform
over the snow-covered fraction of the catchment.

From studies of the spatial distribution of daily precipita-
tion, a positively skewed distribution has been favoured.The
exponential distribution has been a popular choice (Gao
and Sorooshian, 1994; Skaugen, 2002), and other studies
have indicated that a gamma distribution is suitable (Onof
and others, 1998; Mackay and others, 2001). However,

studies of the spatial distribution of accumulated snow
water equivalent (SWE) in forested areas, often measured
at the peak of the accumulation period, show that a normal
distribution is often a good model (Marchand and Killingt-
veit, 1999, 2002; Alfnes and others, 2004). In alpine areas,
more skewed distributions are usually found (Marchand
and Killingtveit, 2002; Alfnes and others, 2004). In develop-
ing an accumulation model for snow, we should thus take
into account that single events are positively skewed,
whereas the distribution of the accumulated events should
converge towards a less skewed or, in some cases, even a
normal distribution. In line with the principles of the
central limit theorem, the rate of convergence towards a less
skewed distribution should depend on the number of accu-
mulations, the shape of the distribution and the spatial cor-
relation of single events.

In Skaugen (1999), the distribution of accumulated snow
was modelled as a summation of independent, identically
distributed gamma variables. This modelling framework
allows positively skewed gamma-distributed single events,
whereas the distribution of the accumulated events will also
be gamma-distributed but with parameters determined by
the original gamma distribution and the number of accu-
mulations. The distribution of the accumulated events will
converge to a normal distribution with a rate depending on
the parameters of the gamma distribution and the number
of events. This approach is continued in this study and we
introduce a gamma-distributed unit SWE. An accumu-
lation or ablation event, which may comprise a number of
units, will, under an assumption of independence, also be
gamma-distributed.

The approach adopted in this study is to analyze the dy-
namical properties of the spatial distribution of snow (or
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SWE), and to represent these in a stochastic model suitable
for implementation in a rainfall^runoff model. We will
further study the features of the conditioned (not including
zeros) and non-conditioned (including zeros) spatial statis-
tics of snow, and develop expressions that explicitly assess
the fraction of snow-covered area.

MODELLINGTHEACCUMULATIONANDABLATION
OF SNOW USING SUMS OF GAMMA-DISTRIBUTED
VARIABLES

The understanding of snow depth and snow cover, meas-
ured at a certain time t, as a function of the history of accu-
mulation and ablation of preceding events, is fundamental
to the proposed methodology.Themodelling approach here
is assumed suitable for a scale denoted as mesoscale defined
as 50m to a few kilometres (see Sand,1990).

Let us consider yðx ¼ xj; t ¼ tiÞ to be the SWE for a
snowfall event measured at time ti at position xj in the
catchment. The variable y constitutes a stochastic process
in time and space, and initially we assume the stochastic
process y to be stationary in time, homogeneous in space,
and independent in both time and space.Then the temporal
distribution of y at any point x must coincide with the spa-
tial distribution of y at any time t. Under these assumptions
we have the rather unrealistic implication that the mean
areal SWE is equal for every snowfall event and that the in-
dividual snowfall events are uncorrelated in space. In a
further discussion of the model we have to take into account
temporal and spatial deviations from the assumptions of in-
dependence, homogeneity and stationarity of the process.
Let us fix the point ðx ¼ xjÞ and assume that the temporal
distribution of y is a two-parameter gamma distribution,
yðx ¼ xj; tÞ ¼ Gð�; �Þ, with probability density function
(PDF):

f�;�ðyÞ ¼
1

�ð�Þ�
�y��1e��y �; �; y > 0 ; ð1Þ

where � and � are parameters. The mean equals
EðyÞ ¼ �=�, and the variance equals VarðyÞ ¼ �=�2. By
introducing the gamma variable u, with mean EðuÞ ¼ 1,
and variance VarðuÞ ¼ 1=� the temporal fluctuations of y
around its mean, EðyÞ ¼ �=�, are taken into account. We
can rewrite the process y as:

yðx ¼ xj; tÞ ¼ u�=� ¼ ð�; �ÞGð�; �Þ : ð2Þ
Now, to include the spatial fluctuations, let us assume that the
spatial distribution of y at a fixed time ti also is gamma, with
mean equal to E½yðx; t ¼ tiÞ� ¼ ui�=� and variance equal to
Var½yðx; t ¼ tiÞ� ¼ u2

i �=�
2. Thus, by introducing a gamma

variable w with mean EðuÞ ¼ 1, and variance VarðuÞ ¼ 1=�,
the spatial process of y can be written as:

yðx; t ¼ tiÞ ¼ wui�=� ¼ ðui�=�ÞGð�; �Þ : ð3Þ
If we further let x and t vary, we see that the process y is not
gamma-distributed, but distributed as the product of two
gamma distributions scaled with �=�:

yðx; tÞ ¼ wu�=� ¼ ð�=�ÞGð�; �ÞGð�; �Þ : ð4Þ
It can further be seen that if we include the spatial fluctua-
tions, Equation (2) should be written:

yðx ¼ xj; tÞ ¼ uwj�=� ¼ ðwj�=�ÞGð�; �Þ : ð5Þ
To approximate the temporal and the spatial distributions
as gamma distributions, we thus have to keep one of the
variables, u or w respectively, constant. In the temporal

domain, this is achieved by setting w constant in time and
equal to 1, which implies that the measured snowfall at each
event is the mean areal snowfall, which is exactly the
procedure when using rainfall^runoff models driven with
precipitation measurements. In the spatial domain, u is kept
constant and we want to consider the spatial distribution of
the accumulation of yðx; t ¼ tiÞ for i ¼ 1; . . . ; n events,
which we denote z0ðx; tnÞ:

z0ðx; t ¼ tnÞ ¼ yðx; t1Þ þ yðx; t2Þ
þ . . .þ yðx; tnÞ; yðx; tiÞ > 0 :

ð6Þ

According to Feller (1971, p.47), the variable z0ðx; tnÞ is gam-
ma-distributed with parameters � and n� if z0 is the sum of
identically and independent gamma-distributed variables,

yðx; tÞ ¼ w�uu�=� ¼ ð�uu�=�ÞGð�; �Þ ; ð7Þ
where �uu is the average value of ui at time tn. We see that
when n grows large, �uu converges to the expectation of u
which is equal to 1. The spatial distribution of z0ðx; t ¼ tnÞ
is thus approximated as a gamma distribution.
z0ðx; t ¼ tnÞ ¼ Gðn�; �Þ, with mean:

E½z0tðx; t ¼ tnÞ� ¼ n�=� ð8Þ
and variance:

Var½z0tðx; t ¼ tnÞ� ¼ n�=�2 : ð9Þ
The above derivation is basically thought appropriate for
accumulation of a stationary variable for a certain amount
of time, i.e. precipitation as snow. The melting process is
more complicated, as themelting is more intense as the tem-
perature increases during the spring, introducing a tempor-
al non-stationarity of the process. However, we
approximate ablation also with the presented approach
and keep account of the variable n by letting accumulated
or melted amounts of snow be, at any time, gamma-distrib-
uted with parameters u� and �. The accounting is done by
keeping track of u and n andupdate n as ntþ1 ¼ nt þ ut, for
accumulation, and ntþ1 ¼ nt � ut, when a melting event
has occurred. In this way the spatial distribution of SWE is
approximated as a gamma distribution where the shape
parameter n� changes in time according to accumulation
or melting events.

INTERMITTENT SNOW RESERVOIR INA
CATCHMENT

We need to incorporate the presence of snow-free areas in
the catchment into the methodology presented above. We
let z and z0 denote accumulated snow including and not in-
cluding zeros respectively. For the sake of simplicity the z
and z0 represent the spatially distributed values of SWE at
the time t of interest, zðx; t ¼ tnÞ. For a catchment suitably
subdivided into r pixels, a number, s, of these pixels contain
snow.The relationship between the conditional and uncon-
ditional mean is then:

EðzÞ ¼ r� s

r
0þ s

r
Eðz0Þ ¼ pEðz0Þ ; ð10Þ

where p ¼ s=r is the fraction of the drainage basin of posi-
tive accumulated snow, often termed the snow-covered area
(SCA). For the second-order moment, we have:

Eðz2Þ ¼ r� s

r
0þ s

r
Eðz02Þ ¼ pEðz02Þ : ð11Þ

The non-conditional variance can then be computed as:

VarðzÞ ¼ Eðz2Þ � EðzÞ2 : ð12Þ
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We can substitute Equations (10) and (11) into Equation (12)
and obtain:

VarðzÞ ¼ pEðz02Þ � p2Eðz0Þ2: ð13Þ
We can further replace Eðz02Þ by Varðz0Þ þ Eðz0Þ2 and we
obtain an expression for the unconditional variance as a
function of the conditional mean, variance and the snow
coverage p as:

VarðzÞ ¼ p½Varðz0Þ þ Eðz0Þ2� � p2Eðz0Þ2 : ð14Þ
By inserting the gamma parameters for the unconditional
moments, Equation (14) becomes:

VarðztÞ ¼ pðn�=�2 þ n2�2=�2Þ � p2n2�2=�2

¼ Varðz0Þ½pþ n�ðp� p2Þ� :
ð15Þ

Consequently the conditional and unconditional coeffi-
cients of variation CVare computed as:

CV0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðz0Þ

p
Eðz0Þ ¼ 1ffiffiffiffiffiffi

n�
p ð16Þ

and

CV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðzÞ

p
EðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n�ð1� pÞ

pn�

s
:

The skew canbe determined for the conditional gamma dis-
tribution as:

� ¼ 2=
ffiffiffiffiffiffi
n�

p
: ð17Þ

We know, by the model proposed above, the conditional
mean and variance of the SWE, and we can in principle use
the fraction of coverage, p, obtained by remote sensing to
determine the unconditional moments of the distribution
of SWE by Equations (10) and (13). However, remotely
sensed information is rare and cannot be counted on as an
input for operational use. This necessitates a methodology
to estimate the SCA, or p, from an assessment of melting
and accumulation events.We have insufficient information
to estimate p as a melting event occurs by using Equation
(10) or (13), because p can take on any value corresponding
to any value of the unconditional moments for fixed values
of the conditional moments. This implies that we have to
guess how p relates to a melting event, and decide on a func-
tional description of this relationship. What we seek to es-
tablish is a relation between melted amount, ut�=�, the

updated conditional mean of SWE, ðnt � utÞ�=�, and
SCA. For a given spatial distribution of SWE, where we
have initially full coverage (p ¼ 1), there exists a set of p-
values corresponding to different melting events. Typically,
for a certain amount to be melted, we would expect signifi-
cant reduction in p if the distribution was very skewed, and
not if the distribution was more normal. This implies that
different spatial distributions of SWE would provide differ-
ent sets of corresponding p-values and melting amounts. In
Figure 1, we have drawn two such sets which correspond to
how we intuitively perceive the melting process. For a fixed
melting amount, say10% of the mean areal SWE, we would
expect significant changes in the SCAwith a skewed distri-
bution, whereas for a less skewed distribution (i.e. a normal
distribution) the effect on the SCA from a melting event
would be small. The upper curve is estimated from a
forested area, whereas the lower curve is estimated from an
alpine area.The sets of corresponding p-values and melting
amounts can thus be seen as scaled versions of the gamma
distribution of conditional SWE. The new scaling
parameter is estimated so that the probability of melting less
than or equal to the entire present mean areal SWE is equal
to 1, i.e. if the entire present snow reservoir was to melt, the
corresponding SCA would naturally be zero. We thus esti-
mate the new scale parameter �0 so that:Z nt�=�

0

fðz;nt�; �
0Þ dz� 1 � �� 0:1� ; ð18Þ

where fðÞ is the PDF of the gamma distribution, nt�=� is
the mean areal SWE at the time t and � is some small
chosen measure (e.g.� ¼ 0.001).The choice of� represents
the level of truncation of the distribution and should not be
arbitrary in that it will define the minimum spatial reso-
lution of our estimates of SCA.The skew of the distribution
is not affected by the new scale parameter. With this ap-
proach the evolution of the SCA is directly linked to the dy-
namical shape parameter, n�, of the spatial distribution of
SWE.

For ablation:

The updated SCA at time t after melting ut equivalents is:

pt ¼ pt�1½1�
Z ut�=�

0

fðz;nt�1�; �
0Þ dz�; pt < pt�1 ;

ð19Þ
where �0 is the new scale parameter and estimated with
Equation (18).

For accumulation:

To update the SCA after accumulation, we apply the same
reasoning as for ablation. The snowfall at time t of ut

equivalents gives us a new scaled version of the gamma dis-
tribution f ½z; ðnt�1 þ utÞv; �0�, where �0 is estimated ac-
cording to Equation (18).The previous pt�1 (before the new
snowfall, ut), which is known, is seen as if a similar amount,
ut, weremelted from the new pt.The updated SCA at time t,
after accumulating ut equivalents, will be:

pt ¼ pt�1

,(
1�

Zut�=�
0

f ½z; ðnt�1 þ utÞ�; �0� dz
)
;

pt > pt�1: ð20Þ

Fig. 1. Corresponding sets of possible melting amounts and

changes in SCA. Upper curve is for forested area and lower

curve is for alpine area.
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CASE STUDY

Themethodology put forward has been implemented in the
HBV model (Bergstro« m, 1992) or, more specifically, the
‘‘Nordic’’ HBV model (S�lthun, 1995) and tested for two
catchments, Aursunden (835 km2) and Atnasj� (465 km2),
located in southern Norway (see Fig. 2). Both these catch-
ments contain parts that can be considered alpine (no vege-
tation) and forested (6.7% lake, 43.3% forested and 50%
alpine for Aursunden, and 1.9% lake, 13.1% forested and
85% alpine for Atnasj�). The general framework of the
HBVmodel has been kept, and it is only the distribution as-
pects of the snow routine that are changed. The snow is
melted according to a degree-day approach, which is con-
sidered to perform as well as an energy-balance approach
at the temporal resolution of 1day (Anderson, 1976). It is
assumed that the parameter � is class-specific for the two
landscape classes alpine and forest. This parameter was es-
timated by solving Equations (8) and (9) for �, giving
� ¼ Eðz0Þ=Varðz0Þ, and we use the measured values of
Eðz0Þ and Varðz0Þ from a series of snow courses performed
during the 2002 season (see Alfnes and others, 2004). As
Table 1 illustrates, the parameter � was significantly differ-
ent with an order of magnitude for the two landscape classes
forest and alpine. For weeks 15 and 18, � did not vary much
in time or in space, whereas for week 22 the estimates
became very uncertain due to advanced snowmelt and few
measuring points. The measurements did, however, give
confidence to an assumption of global values of � for alpine
and forested areas.

The hydrological model corrects the input values of pre-
cipitation for both catch deficiency and lapse rate. Taking

this into account, it was considered most appropriate to esti-
mate the ratio �=� as the average daily precipitation (liquid
or solid) of days with precipitation from the precipitation
station associated with the catchment in question.With the
ratio �=� and � known, � could be estimated.

RESULTS AND DISCUSSION

Figure 3 shows the temporal development of the snow reser-
voir and modelled and observed hydrograms for the tradi-
tional HBV model (Fig. 3a) and the HBV model with the
proposed snow distribution (Fig. 3b), together with the tem-
poral development of the SCA (Fig. 3c) for the two models
for Aursunden for winter 2002. For this catchment, the
model was recalibrated with the objective, automatic cali-
bration procedure PEST (Brebber and others, 1994) after
the new model for snow distributionwas implemented.This
explains the precipitation differences observed between Fig-
ure 3a and b . Figure 4 shows the same forAtnasj�, but here
the model was not recalibrated after implementation of the
new model for snow distribution. In the figures, we also find
the estimated mean areal SWE and SCA from snow courses
performed during weeks 15, 18 and 22 for Aursunden and
weeks 15 and 18 for Atnasj� (see Alfnes and others, 2004).
Table 2 shows a comparison between observed and esti-
mated values of SWE and SCA. From Figures 3 and 4 and
Table 2 we see that for both catchments the estimated snow
reservoir (mean areal SWE) of the proposed model is in
better agreement with observed values than that of the trad-
itional model.We see that the spring 2002 runoff is not per-
fectly modelled by either model, although for Atnasj� the
peak of the spring flood is better estimated by the trad-
itional model. Comparing the modelled hydrograms, the
traditional model seems slightly to overestimate the snow
reservoir, and maintains a significant snow reservoir for a
longer period than the proposed model.The prolonged con-
tribution of meltwater in the traditional model overesti-
mates the runoff in late spring. The temporal development
of the SCA for the Aursunden catchment is slightly better
modelled by the proposedmodel for all the dates when com-
pared to SCA estimated from the snow courses (Fig. 3c;
Table 2). ForAtnasj� (Fig. 4c;Table 2) the SCA modelled by
the proposed model agrees very well with observed values
for week 15, but the proposed model fails to increase the
SCA sufficiently as a response to the heavy snowfall of 30
April. The traditional model, however, clearly overesti-
mates the SCA for week 15 and is approximately correct for
week18, though, one must suspect, for the wrong reason.

Fig. 2. Location map showing the catchments Aursunden and

Atnasj�, south Norway.

Table 1. Parameter � estimated for the two catchments for

alpine and forested areas for weeks 15, 18 and 22

Alpine Forest

Week No. 15 18 22 15 18 22
Aursunden 0.0065 0.0065 0.009 0.041 0.034 0.008
Atnasj� 0.0065 0.0038 ^ 0.031 0.027 ^
Global mean 0.0069 0.032

Table 2. Comparison of observed and estimated SWE and

SCA with traditional and new snow-distribution models for

catchments Aursunden and Atnasj�, for weeks 15, 18 and 22

Week No. Observed Traditional model New model

SWE SCA SWE SCA SWE SCA

mm % mm % mm %

Aursunden 15 436 88 477 100 441 99
18 342 81 398 100 394 99
22 69 25 95 36 76 33

Atnasj� 15 146 52 198 79 159 52
18 132 67 174 62 145 36
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Updating the SCA from remotely sensed data

In principle, we would like to update the rainfall^runoff
model with SCA estimates from remotely sensed data. Let
us say that we obtain an SCAestimate from remotely sensed
data that differs from that of the model.We then have two
alternatives. One is that the SWE distribution is wrong but
the water balance (the conditional moments) is assumed
correct, and we simply update the unconditional moments
according to Equations (10) and (15) with the observed
SCA. The other option is that the water balance (condi-
tional moments) is incorrect due to wrong input (precipita-
tion and temperature) or that the melting procedure is

wrongly calibrated so that more or less water has left the
catchment. The latter case is more complicated in that we
have to update the conditional moments conditioned on an
observed SCA. A possible way forward is to assume that the
general statistical model is correct and increase or decrease
the n, and thus the conditional moments, according to
Equations (18^20) (with iterated �0) until we have an SCA
that corresponds with the observed one. This is a topic for
further development of the model.

Assumptions of independence of the statistical model

The procedure described in this study is of an approximate
nature in that the assumptions of independence in time and

Fig. 3. Snow reservoir and runoff modelled by traditional snow distribution (a) and with the new snow distribution (b) for

Aursunden. Black line represents observed runoff, and grey line represents simulated runoff. In (c), the temporal development of

the SCAfor the traditionalmodel (black line) and the newmodel (grey line) is shown. Asterisks represent observed values of SCA

and SWE.
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space may be compromised to an unknown degree. Regard-
ing the assumption of independence in space of y, we know
from studies of precipitation events that single events usual-
ly exhibit significant correlation in space (Skaugen, 1997).
For snowfall events, very little literature on the subject ex-
ists. If precipitation as snow were considered spatially de-
pendent, one would expect to find the measurements of
accumulated snow (z0) to be correlated in space. However,
several investigations report low spatial correlation for a
range of distances (Gottschalk andJutman,1979; Elder and
others, 1989; Faanes and Kolberg, 1996). The studies of the
first and last of these references were carried out for Swedish
and Norwegian data respectively and are thus representa-
tive for the present study. A possible reason for the observed
low spatial correlation is that falling snow is more suscepti-
ble than rain to wind redistribution when falling, which
might disturb the original spatial structure of the precipita-
tion field, and redistribution also occurs after snow has
settled on the ground (Essery and others,1999).

In order to investigate possible temporal dependencies,
data from a snow pillow,Vauldalen (820ma.s.l.), located in
the Aursunden catchment, was tested for autocorrelations.
Out of 16 sequences with 413 days with snowfall, only 5
showed significant autocorrelation for lag 1day and none
showed significant autocorrelation for longer time lags.
Temporal independence can thus be assumed

CONCLUSIONS

Modelling the snow reservoir as sums of gamma-distributed
variables takes into account in a realistic way the dynamic
properties of the spatial distribution of SWE, in that it
allows for a dynamical change in the shape of the distribu-
tion in accordance with observations.

The new spatial snow distribution compares favourably
to the traditional onewith respect to completing themelting
of the snow reservoir and to the temporal development of
SWE and SCA.

Fig. 4. Same as Figure 3, but forAtnasj�.
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The development of snow-free areas is, with the pro-
posedmethodology, explicitly linked to the shape of the spa-
tial distribution of SWE in the catchment.

A topic for further development is to incorporate the
observed SCA from remotely sensed data to update the con-
ditional moments of SWE.
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