Effects of irrigation on the water and energy balances of the Colorado and Mekong river basins
Original version
doi.org/10.1016/j.jhydrol.2005.09.028Abstract
An irrigation scheme, based on simulated soil moisture deficit, has been included in the variable infiltration capacity macroscale hydrologic model. Water withdrawals are taken from the nearest river, or, in periods of water scarcity, from reservoirs. Alternatively, water can be assumed freely available. The irrigation scheme successfully simulates crop consumptive water use in large river basins. In general, irrigation leads to decreased streamflow and increased evapotranspiration. The locally significant increases in evapotranspiration (or latent heat) results in lower surface temperatures, and hence decreased sensible heat flux. Simulations performed for a 20-year period for the Colorado and Mekong river basins indicate irrigation water requirements of 10 and 13.4 km3 year−1, respectively, corresponding to streamflow decreases of 37 and 2.3%. The increase in latent heat flux is accompanied by a decrease in annual averaged surface temperatures of 0.04 °C for both river basins. The maximum simulated increase in latent heat flux averaged over the three peak irrigation months for one grid cell is 63 W m−2, where surface temperature decreases 2.1 °C. Simulated actual water use is somewhat less than simulated irrigation water requirements; 8.3 and 12.4 km3 year−1 for the Colorado and Mekong river basin, respectively.